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A Peer-to-Peer (P2P) video streaming system usually consists of a large number

of peers, which have heterogeneous physical properties. Orthogonal to the physical

heterogeneity, there is another type of heterogeneity called demand heterogeneity.

Namely, peers have their own demands on the quality and type of the streaming

service. The problem of demand heterogeneity has received little attention and as a

result current P2P video streaming systems cannot achieve satisfactory performance

due to demand heterogeneity. In this dissertation, we study how to design efficient

P2P video streaming systems with heterogeneous user demands.

First, we study the problem of heterogeneous user demands on video quality. We

design an efficient P2P live streaming system which greatly reduces the bandwidth

consumption and still achieves satisfactory streaming quality. To reduce the band-

width consumption, we use adaptive streaming, so that the streaming rate of a peer

is commensurate with its window size. In order to maintain satisfactory streaming

quality even in the case when peers dynamically change their window sizes, small-

window peers are designed to contribute part of their bandwidth to help large-window

peers.

Second, we study the problem of heterogeneous user demands on playback de-

lay. Specifically, we consider time-shifted streaming service and bounded-delay live

streaming service. With time-shifted streaming service, a peer can watch a program
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which has been broadcast live before it joins the system. We propose a cooperation-

based prefetching design which distributes video segments more widely in a P2P

streaming system and thus greatly improves the streaming quality. With bounded-

delay live streaming service, some peers (e.g., paid users) can watch the program with

short and bounded playback delays, and other peers (e.g., free users) with best-effort

short playback delays. We prove that the bounded-delay live streaming problem is

NP-Complete, and propose a heuristic algorithm which constructs an efficient P2P

overlay structure of peers by considering their playback delay requirements and their

physical properties.

The promising results in this dissertation show that our algorithms are effective

in meeting heterogeneous user demands on video quality and playback delay. In the

future, we are interested in designing efficient P2P streaming systems in mobile and

cloud environments.
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Chapter 1

Introduction

1.1 Peer-to-Peer (P2P) Streaming Systems

Peer-to-peer (P2P) streaming systems, in which individual users (also called peers)1

collaboratively distribute video streams, have become one of the most important

applications on the Internet today [40, 38, 84]. The basic idea of P2P streaming

systems is to encourage peers to contribute their upload bandwidth to forward video

streams to other peers when downloading their video streams. P2P streaming systems

reduce server bandwidth consumption, and thus can support a large number of users.

P2P streaming systems can be further divided into two different types: P2P live

streaming [44] and P2P video-on-demand (VOD) streaming [21]. In a P2P live stream-

ing system, users can watch real-time videos whenever they join the system. They

can choose which video to watch by subscribing to different program channels, but

they cannot jump backward or forward when watching the video. In a P2P VOD

streaming system, users can choose to play pre-recorded videos by searching using

the interface provided by the P2P software. The pre-recorded videos are stored in

1We hereinafter use the terminologies user and peer interchangeably to refer to an Internet user
in a P2P streaming system.
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the VOD library, and can be served at anytime. During the playback, users can jump

forward, jump backward, pause and stop.

P2P streaming systems have attracted lots of interests from both academia and

industry. The academic research mainly focuses on optimal solutions in terms of

service quality and resource efficiency (e.g., providing smooth video streams in case

of peer churn [46, 66], minimizing the video playback delay [4, 63], optimizing peers’

bandwidth consumption [94, 2], etc.), and these efforts derive theoretical performance

bounds for P2P streaming systems. On the other hand, commercial P2P streaming

systems (e.g., UUSee [70], PPLive [58], Sopcast [64]) have been widely deployed and

have attracted a large number of users. They can successfully serve thousands of

video streams to millions of P2P users with low server bandwidth consumption.

The work described in this dissertation is motivated by the observation that users

in a P2P video streaming system may have different demands on the type and quality

of streaming service. The rest of the dissertation is organized as follows. Chapter 1.2

explains heterogeneous user demands in P2P streaming systems. Chapters 1.3 and

1.4 describe two types of heterogeneous user demands: heterogeneous video quality

demands and heterogeneous playback delay demands, respectively. Finally, Chapter

1.5 summarizes the contributions of the dissertation.

1.2 Heterogeneity in P2P Streaming Systems

In a P2P streaming system, peers usually have heterogeneous physical properties, such

as various bandwidth capacities, widely-spread geographical locations, and diverse

viewing appliances. We refer to the existence of these various physical properties as

physical heterogeneity. Most of the current P2P streaming research [36, 72, 41, 54]

tackles the physical heterogeneity problem, and studies how to provide satisfactory
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streaming quality to users with heterogeneous physical properties.

There is another important type of heterogeneity called demand heterogeneity, and

it is orthogonal to the aforementioned physical heterogeneity. Namely, users have their

own demands on the quality and type of the streaming service. For example, some

users in a P2P streaming system may watch a video with higher playback resolutions

and shorter playback delay than others. That is, users may have different demands

on video quality and delay. The demands of users could be independent of their

bandwidth capacities, locations and other physical properties. While the problem of

physical heterogeneity has been extensively studied for P2P streaming systems, the

problem of demand heterogeneity however has received little attention. As a result,

the current P2P streaming systems cannot provide satisfactory streaming quality to

users with heterogeneous demands.

However, it is challenging to design a P2P streaming system for users with het-

erogeneous demands. One important reason is that the demands of users are more

dynamic than the physical properties of the users. A user usually has a fixed upload

capacity, a fixed location (at least in a short time period). However, a user can change

his/her demand at anytime. For example, a user can change his/her demand on the

video quality at any time. The dynamic demand significantly complicates the design

of a P2P streaming system.

In this dissertation, we focus on two types of demand heterogeneity: heteroge-

neous user demands on video quality discussed in Chapter 1.3 and heterogeneous

user demands on playback delay discussed in Chapter 1.3. In the first type, users in

a P2P live streaming system may watch the same channel with different window sizes

which have different quality demands. In the second type, users in a P2P streaming

system may watch the same channel with different playback delay requirements.
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1.3 Heterogeneous Video Quality Demands in P2P

Live Streaming Systems

What are heterogeneous video quality demands? The video quality of a user is defined

as the video playback resolution of the user. Users in a P2P streaming system have

heterogeneous video quality demands. For example, different users may watch the

same channel with different window sizes. These window sizes have different number

of pixels, and the video is displayed at different playback resolutions. Specifically, a

user with a large window has a demand for high video quality, whereas a user with a

small window has a demand for low video quality.

Why is it important to study the problem of video quality demand heterogeneity?

This is because if we can solve this problem, we can significantly reduce the band-

width consumption of a P2P streaming system, which is a serious concern of current

P2P streaming systems and is strongly complained by Internet Service Providers

(ISPs). Current P2P streaming systems send the same encoded video data at the

same streaming rate to all users watching the same channel, regardless of their het-

erogeneous demands on video quality. We propose to send different encoded video

data at different streaming rates to users with different demands on video quality.

For example, we can send more encoded video data at a high streaming rate to users

with a demand for high video quality, and send less encoded video data at a low

streaming rate to users with a demand for low video quality. By doing so, we can

significantly reduce the total amount of consumed bandwidth, especially for a large

P2P streaming system supporting millions of users.

Why is it challenging to tackle the video quality demand heterogeneity problem?

There are two major reasons. First, one important reason that current P2P streaming

systems send the same encoded video data at the same streaming rate to all users
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regardless of their demands on video quality is that it greatly simplifies the design of

P2P streaming systems. By sending different encoded video data at different stream-

ing rates to users with heterogeneous video quality demands, we can significantly

reduce the total bandwidth consumption, however, it also considerably complicates

the design of a P2P streaming system. Second, a user may dynamically change its

demand on video quality at any time, however, it is challenging to quickly meet the

new demand of a user without disturbing other users in the system. We have suc-

cessfully solved all above challenges, and our solutions are described in Chapters 3

and 4.

1.4 Heterogeneous Playback Delay Demands in P2P

Streaming Systems

What are heterogeneous playback delay demands? The playback delay of a program

experienced by a user is defined as the time interval between the time when the pro-

gram is live broadcast and the time when the user finally watches the program. Users

in a P2P streaming system have heterogeneous playback delay demands, because they

want to watch programs at their convenient times and different users may have differ-

ent convenient times. For example, some users may want to watch a program when

it is broadcast live, whereas some users may want to watch it at a later time.

Why is it important to study the problem of playback delay demand heterogene-

ity? This is because current P2P streaming systems provide users with very limited

playback delay choices: either best-effort live streaming or VOD streaming, and thus

cannot meet the diverse needs of users.

• With best-effort live streaming, a P2P streaming system tries its best effort to

stream a live broadcast program to its users as quickly as possible, but there
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is no guarantee on the playback delay. The playback delay of current P2P

best-effort live streaming systems is in the range of seconds to minutes.

• With VOD streaming, a P2P streaming system streams the pre-recorded video

of a program to its users, and thus the VOD streaming service becomes available

to its users only after the program has finished and been recorded. Therefore,

the playback delay of current P2P VOD streaming systems is very long and is

in the range of hours to days.

In this dissertation, we study how to meet the diverse needs of users by providing

more playback delay choices.

• Time-shifted streaming: This type of streaming service lies between live stream-

ing and VOD streaming. With live streaming, the playback delay is relatively

short and in the range of seconds to minutes (i.e., soon after a program has

been live broadcast). With VOD streaming, the playback delay is relatively

long and in the range of hours to days (i.e., after a program has finished and

recorded). With time-shifted streaming, the playback delay is in the middle

and in the range of minutes to hours. With time-shifted streaming, a user can

watch a program at a time later than its scheduled live streaming time but

before the time when the VOD streaming service becomes available, and thus

provides users with more flexibility on the playback delay. In addition, a user

can jump to any video segment within the time-shifted period predetermined

by the service provider. For example, in a time-shifted streaming system with

a 2-hour time-shifted period, a user can watch any video segment broadcast in

the past 2 hours.

• Bounded-delay live streaming: With such a type of streaming service, a P2P

streaming system streams a live broadcast program to some users (e.g., paid
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users) with a short and bounded delay, and to other users (e.g., free users) with

a best-effort delay. While the playback delay of best-effort live streaming users

is in the range of seconds to minutes, the playback delay of bounded-delay live

streaming users is in the range of seconds. More importantly, the playback

delay of best-effort live streaming users is not guaranteed whereas the playback

delay of bounded-delay live streaming users is bounded and guaranteed.

Why is it challenging to tackle the playback delay demand heterogeneity problem?

It is challenging to design a time-shifted streaming system, because users in such a

system may watch different video segments in the time-shifted period, and thus it is

hard for different users to share their video segments and is hard for the system to

achieve satisfactory streaming quality. It is challenging to design a bounded-delay live

streaming system, because many factors contribute to the playback delay experienced

by a user, and thus it is hard to control the playback delay especially in a system

with a large number of dynamic users with heterogeneous physical properties. We

have successfully solved all above challenges, and time-shifted streaming is described

in Chapter 5 and bounded-delay live streaming is described in Chapter 6.

1.5 Our Contributions

Figure 1.1 shows the relationship among different chapters, where the root topic in this

dissertation is demand heterogeneity in P2P streaming systems. Among various types

of demand heterogeneity, we focus on demand heterogeneity on video quality and

playback delay. Chapter 2 presents the related work. Chapters 3 and 4 can be read

together, in that Chapter 3 explores the design of simple and efficient systems dealing

with heterogeneous demands on video quality, and Chapter 4 formulates the problem

as a demand-supply problem, and studies the problem optimization. Chapter 5 and
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Playback Delay Demand

Demand Heterogeneity 

Quality Demand

Chapter 2: Related Work

Chapter 3:
Designing efficient
P2P streaming
systems with 
heterogeneous
user demands
on video quality

Chapter 4:
A general framework
for analyzing P2P
streaming systems
with heterogeneous
user demands on
video quality

Chapter 5:

P2P time−shifted
streaming systems

Chapter 6:
Designing efficient
P2P bounded−delay
streaming systems

Designing efficient

Figure 1.1: Disseration Organization and Chapter Relationship.

Chapter 6 focus on demands on playback delay, but they can be read independently.

Chapter 5 investigates P2P time-shifted streaming and Chapter 6 presents the design

of P2P bounded-delay live streaming.

The contribution of Chapter 3 is that we propose two simple and efficient schemes

for P2P live streaming systems with heterogeneous video quality demands, with the

goal of significantly reducing the total bandwidth consumption while still maintaining

satisfactory streaming quality. Specifically, we design and study two schemes which

represent two different design philosophies: a well-balanced and more distributed

method called Partial Forwarding Scheme (PFS), and a supernode-based method

called Partial Participation Scheme (PPS).

The contribution of Chapter 4 is that we propose a general theoretical framework

for analyzing P2P streaming systems with heterogeneous user demands on video

quality. The difference between Chapters 3 and 4 is that Chapter 3 considers only a

specific video encoding method which simplifies the system design, whereas Chapter 4

considers a more general video encoding method and then extends the work proposed
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in Chapter 3 to a more general system design.

The contribution of Chapter 5 is that we design an efficient P2P time-shifted

streaming system. The difficulty lies in that users in such a system may watch different

video segments in the time-shifted period and thus it is hard for different users to

share their video segments and is hard for the system to achieve satisfactory streaming

quality. We propose a cooperation-based prefetching design which distributes video

segments more widely in the system and thus makes it easier for users to share their

video segments.

The contribution of Chapter 6 is that we design an efficient P2P bounded-delay

live streaming system. The difficulty lies in that many factors contribute to the

playback delay experienced by a user, and thus it is hard to control the playback de-

lay especially in a system with a large number of dynamic users with heterogeneous

physical properties. We first show that the bounded delay live streaming problem is

NP-complete, and then propose a heuristic algorithm called high fanout promotion

(HFP) algorithm. Intuitively, HFP constructs an efficient P2P overlay structure of

users by considering their different playback delay requirements, their upload band-

width capacities and their distances to the streaming server.

The work described in Chapter 3 has been published in [52, 89]. The work de-

scribed in Chapter 4 has been published in [90]. The work described in Chapter 5

has been published in [91]. The work described in Chapter 6 is is currently under

review [92].
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Chapter 2

Related Work

2.1 Related Work on P2P Video Streaming Sys-

tems

P2P video streaming systems have been widely used in large-scale video distribu-

tion, and there are lots of studies on P2P video streaming systems. In a P2P video

streaming system, peers are organized into an overlay, where they maintain a set

of connections to other peers. Generally, P2P video streaming systems have tree-

based, multi-tree-based and mesh-based overlay structures [40]. In a tree-based over-

lay [28, 71], the video streaming server serves as the root of the tree and peers are

located at different levels of the tree. Peers receive video contents from their parent

peers. This structure is not resilient to peer churn and leaf peers’ bandwidth can-

not be utilized. Multi-tree based systems are proposed in [6, 66, 46], where the video

stream is divided into substreams and each substream is delivered over its correspond-

ing subtree. So the leaf peers’ upload bandwidth can be used by other peers. The

mesh-based overlay is proposed to improve system robustness and bandwidth utiliza-

tion [97, 30, 95]. When a peer joins a mesh-based overlay, it first contacts the tracker
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server, which maintains the information of online peers. Then the server returns a list

of online peer IDs (e.g., IP address) to the newly joined peer. Then this peer selects

some peers from the list and sets up connections with them. Since the mesh-based

overlay is resilient to peer churn and has low implementation complexity, it is widely

used in commercial systems [58, 60, 70], and we also adopt it in our dissertation.

To improve the throughput of P2P video streaming systems, several content

scheduling methods have been proposed, such as a stream-level method [11] and

a block level method [94]. The former uses layered coding and determines routes for

streams of different layers, while the latter is more fine-grained because it describes

how a node fetches a particular block from a particular neighboring peer. [96] pro-

poses random scheduling, which is simple and has high performance with the proper

configuration. Adaptive queue based chunk scheduling [19] and min-cost schedul-

ing [95] study the optimal scheduling to fully utilize the resources and to achieve the

maximum streaming rate. [93] formulates the P2P live streaming as a network flow

problem and maximizes the overall performance. [47] proposes a distributed algo-

rithm called “random useful packet forwarding” and theoretically proves that it is

optimal.

Recently, cloud service attracts lots of efforts of leveraging it to support video

streaming from both industry [50, 14] and academia [26] since it provides an agile

and scalable resource access. [26] proposes a cloud-based video proxy that delivers

high-quality streaming videos using a scalable codec to adapt to network dynamics. In

[82], Wu et al. check the fundamental question of how to configure the cloud utility to

meet the highly dynamic demands, and address this practical issue using VoD as the

example application. [65] finds that clouds are ready to support individual users, but

many efforts are required to enable clouds to support large distributed applications.

[73] is the very first work on migrating live media streaming to a cloud platform, and
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presenting the results of combining cloud service and P2P live streaming. There are

still many areas of future research to be explored to adopting cloud service in P2P

video streaming.

2.2 Related Work on Heterogeneity in P2P Video

Streaming Systems

P2P video streaming systems consist of thousands of millions peers which have var-

ious physical properties, e.g., their access bandwidth, widely-spread geographical lo-

cations, diverse viewing appliances and so on. The heterogeneous properties have

already been considered in the P2P video streaming system design. [10] proposes the

framework which models differentiated services to users with heterogeneous physical

properties. [39] shows that peer bandwidth heterogeneity can significantly increase

the delay performance of all peers, and the snow-ball streaming algorithm is proposed

for minimizing the delay bound in realtime P2P video streaming. A new schedul-

ing approach for layered video streaming, called LayerP2P[83] considers various link

bandwidth in a P2P overlay. It achieves high throughput, high layer delivery ratio,

low useless packets ratio, and low subscriber jitter. Peers in a P2P video streaming

system may have different Internet service providers, which may lead to inefficient

network resource usage and/or low application performance. In [85], Xie et al. pro-

pose a simple architecture called P4P to provide more effective cooperation based

traffic control between applications and network providers.

Different devices in P2P video streaming systems are considered in [35, 36]. Since

some devices may have limited computing power, an additional metadata overlay is

constructed to minimize the total computing overhead. [35] also leverages active peer

cooperation without demanding infrastructure support. In [36], Liu et al. study how
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to efficiently serve heterogeneous devices with limitations different from those of desk-

top computers. They propose the Dynamic Bi-Overlay Rotation (DOOR) scheme,

and design the corresponding rotation scheme that reacts to dynamic situations and

balances across multiple types of resources on individual nodes. They extend their

work in [37] by studying the upper bound of achievable performance with the available

resources.

Orthogonal to the aforementioned physical heterogeneity, there is another type of

heterogeneity called demand heterogeneity. Namely, peers have their own demands

on the quality and type of the video streaming service. However, the problem of

demand heterogeneity has received little attention, and there is no much related

work. In [77], different P2P sessions are treated with different priorities, and a novel

application layer approach called Diverse is presented. Different from their work, our

work focuses on different services at the peer level. In this dissertation, we consider

two types of user demands: first, demands on the video quality, and second, demands

on the playback delay. The related work is discussed in following two sections.

2.3 Related Work on Heterogenous User Demands

on Video Quality

Even though P2P video streaming systems have been extensively studied, to the best

of our knowledge, the topic of support users’ heterogeneous demands on video quality

has not been addressed before and there is no related work on this topic. Below,

we briefly summarize the related work on adaptive streaming and on cooperation

schemes.
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2.3.1 Related Work on Adaptive Streaming

Several video coding techniques, including single-layer coding, layered coding, and

MDC, have been studied for P2P video streaming systems. Compared to layered

coding and MDC, single-layer coding is the simplest to implement and has the high-

est coding efficiency. Layered coding and MDC have been studied for P2P video

streaming systems to address the bandwidth heterogeneity [83, 11, 55, 45, 5] or to

provide incentives [43, 49]. However, they are still not widely used in commercial

P2P video streaming applications mainly because of their complexity and relatively

low coding efficiency compared to single-layer coding. As the gap between the coding

efficiency of single-layer coding and layered coding has been significantly reduced re-

cently, we expect to see an increased use of layered coding. For example, H.264/SVC

(layered coding) [76] achieves the same video quality as H.264/AVC (single-layer cod-

ing) at the cost of only 10% rate increase. Different from the existing work on adaptive

streaming which addresses bandwidth heterogeneity or incentive issues, we use adap-

tive streaming to reduce the bandwidth consumption in case of heterogeneous user

demands on video quality.

2.3.2 Related Work on Cooperation Schemes

The concept of helpers is introduced in [57] for P2P based file sharing systems. Several

cooperation schemes [67, 12, 34, 24] have been proposed so that a user can contribute

its unused upload bandwidth to another channel not being watched by the user it-

self. These cooperation schemes can improve the overall system performance when

some channel has excessive upload capacity whereas another channel has insufficient

upload capacity. To tackle the channel churn and channel resource imbalance prob-

lems in a multi-channel P2P streaming system, View-Upload Decoupling (VUD) [81]



www.manaraa.com

15

decouples user downloading from uploading and thus a user can contribute its upload

bandwidth to any channel that the user may or may not be viewing. Different from

these cooperation schemes which consider cooperation among different channels, our

work considers cooperation within a single channel.

Peer-Assisted Transcoding (PAT) [35] also considers cooperation within a single

channel. However, it studies the cooperation among users using heterogenous types

of devices with different screen sizes, different color depths, and different bandwidth

capacities. But our work studies the cooperation among users with different window

sizes. A fundamental difference between their work and our work is that the type of

a device is fixed whereas the size of a window is dynamic.

2.4 Related Work on Heterogeneous User Demands

on Playback Delays

We first review related work on different types of streaming services providing differ-

ent playback delays, and then review live streaming systems providing differentiated

playback delays.

2.4.1 Related Work on Different Types of Streaming Services

Providing Different Playback Delays

Most studies on P2P video streaming systems focus on live streaming [44, 31, 19] and

Video-on-Demand (VOD) streaming [21, 40, 42]. [94, 93] use the mesh structure,

and formulate P2P live streaming as a network flow problem to maximize the overall

performance. [94] proposes the live streaming system design using layered coding in

heterogeneous networks. “random useful packet forwarding” is proposed in [47] and
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is proved to be optimal. In [31], a live stream is divided into serval substreams, and

it uses a hybrid pull-push method which reduces the playback delay and the control

overhead. [25] claims that it is more challenging to design P2P VOD streaming

because of less synchrony among VOD peers sharing video content. [22] analyzes the

benefits of P2P VOD streaming and develops an analytical model capturing many

critical features of P2P VOD streaming. In [32], iPass is proposed to use a dynamic

buffering-progress-based peering strategy for asynchronous streaming. It encourages

peers to contribute their upload bandwidth by enabling those of higher contribution

to pre-fetch content at a higher speed. [9] introduces the popular Bit-Torrent P2P

technology into P2P VOD streaming and proposes Toast to offload work from the

video streaming server.

Providing low playback delays to peers in P2P live streaming is studied in [97].

In [62], a mesh-based protocol called Fast-Mesh is proposed to optimize the source-

to-peer delay. With this protocol, peers select their parents based on their network

powers which are defined as their throughput and delay ratios. In [4], the low play-

back delay and high quality video is provided through maintaining a set of multicast

trees, prioritizing packets and retransmitting locally. In [8], the source sending rate

is adapted to the bandwidth availability and the congestion, so that the low end-to-

end delay is achieved in a multi-party conference. Liu et al. [39] study the delay

constraints and derive the minimum delay bounds for realtime P2P video stream-

ing. They propose a snow ball streaming and show that it archives better delay

performance than tree-based streaming. In [63], Qiu et al. present heuristics to solve

the minimum mesh delay problem. Minimizing end-to-end delay under dynamic and

heterogeneous network environments is investigated in [23], which optimizes the band-

width allocation to achieve the minimum average end-to-end P2P playback delay.

There are some studies on time-shifted streaming. In [18], time-shifted streaming
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is used to guarantee video continuity. Peers that suffer service disconnection can join

a time-shifted stream to keep the video continuity. [13] proposes that a peer uses one

cache to store the content which they are watching, and another cache to store the

video segments to implement the time-shifted feature. In [20, 51], the time-shifted

feature is implemented by caching a portion of a video stream at each peer and serving

it asynchronously. Liu et al. [86] propose peer-assisted time-shifted stream system

based on connected devices located at the home which are stable and can be easily

tracked. However, these studies have not yet answered the fundamental problem of

how peers fetch the specific video segments from the specific neighbor peers so that

the overall system performance is optimized.

2.4.2 Related Work on Live Streaming Systems Providing

Differentiated Playback Delays

There are research studies on providing differentiated service in P2P streaming sys-

tems. Clevenot-Perronnin et al. [10] establish a multiclass fluid model to allocate

upload bandwidth to different peer groups in a P2P download file systems. Wu et

al. [77] propose an approach, named Diverse, to provide differentiated bandwidth

allocation services to different streaming sessions. These studies focus on bandwidth

allocation and focus on the overall performance of high priority groups. Different

from their works, our work is to deliver bounded delay video to as many subscribers

as possible. In ACTIVE [98], active peers dynamically move closer to the root, so

that they can achieve low playback delay. However, ACTIVE does not work for our

problem due to the following reasons: 1. It only supports a small number of peers

with low delay, while P2P streaming systems usually consist of many more peers. 2.

Active peers do not necessarily have low delay connections and high upload band-

width, so moving active peers may not help in serving subscribers. In [29], peers are
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divided into several regions according to locality of interests. Frequent updates of

peers are propagated under certain time constraints. A latency prediction system is

proposed in [3] to help peers cluster themselves. But in our bounded delay problem

in this dissertation, since all peers are viewing the same video, the divide and conquer

strategy does not work.
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Chapter 3

Designing Efficient P2P Streaming

Systems with Heterogeneous User

Demands on Video Quality

3.1 Motivation and introduction

Peer-to-peer (P2P) streaming systems, in which individual users (also called peers)

collaboratively distribute video streams, have become one of the most important

applications today [40, 38, 84]. As the population of P2P streaming users grows,

the total amount of their consumed bandwidth increases rapidly and has become a

great challenge to Internet Service Providers. It is therefore important to design a

bandwidth-efficient P2P streaming system, especially for a large number of users.

We have observed that different peers in a P2P live streaming system may watch

the same channel with different window sizes which have different quality demands.

These window sizes have different number of pixels, and the video is displayed with

different playback resolutions. To simplify the description, we use the window size
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Figure 3.1: Snapshot of a P2P live streaming system, where users watch the same
channel with different window sizes.

to represent the corresponding video quality demands. More importantly, they can

dynamically change their window sizes at any time through dynamic window resizing

events.

A user in a P2P streaming system may customize its window size for various

reasons, such as reducing the window size to temporarily check other information on

the other area of the screen, or increasing the window size for better video quality.

Consequently, users watching the same channel may have different window sizes. To

simplify our discussion, we consider only two groups of users based on their window

sizes: large-window users and small-window users.

Figure 3.1 shows a snapshot of a P2P live streaming system with a mesh overlay,

where users 1 and 4 watch the channel in a large window, and users 2, 3, 5, and

6 watch the same channel in a small window. A user can dynamically change its

window size according to its own preference. For example, at some time, user 1 may

reduce its window size and use the remaining screen to check emails, and change back

to a full-screen window after reading emails. At some time, user 6 may change to a
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full-screen window because the channel is very interesting. Since a user can change its

window size at any time, we refer to these events as dynamic window resizing events.

Note that due to dynamic window resizing, a large-window user may not have any

large-window neighbors. For example, if user 1 reduces its window size from large to

small, user 4 does not have any large-window neighbors.

We have the following three design goals for a scheme to support dynamic window

resizing.

• Design Goal 1: Efficient Bandwidth Consumption: The scheme should effec-

tively reduce the total bandwidth consumption, which can be measured by the

total download rate of all users (or equivalently the total upload rate of all

users).

• Design Goal 2: Good Streaming Quality at Resizing Events (i.e., Short Resiz-

ing Delay for Small-Window Users): The scheme should achieve short resizing

delay, which is defined as the delay it takes for a user to see a high-resolution

video when the user changes its window size from small to large.

• Design Goal 3: Good Streaming Quality at Other Times : The scheme should

maintain good streaming quality, which can be approximately measured by the

playback continuity [97] that is the ratio of the total number of packets received

by a user before the playback deadline to the total number of packets that

should be received by the user.

For the second design goal, notice that there is no delay when a user changes its

window size from large to small as the user already has all the data required by a

small window.
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Figure 3.2: With Bandwidth First Scheme (BFS), the base layer (denoted by B) is
streamed to all users, and the enhancement layer (denoted by E) is streamed to only
users with a large window (i.e., users 1 and 4).

3.2 Dynamic Window Resizing Schemes

Most commercial P2P streaming systems, such as PPStream [60], use single-layer

coding because of its simplicity and high coding efficiency. With single-layer coding,

the streaming rate to every user is the same and independent of its window size.

Therefore, in case of dynamic window resizing, a P2P streaming using single-layer

coding can provide zero resizing delay (i.e., design goal 2) and good streaming quality

(i.e., design goal 3), however, it is inefficient in bandwidth consumption (i.e., design

goal 1). These conclusions are verified by the measurement study of the picture-in-

picture feature of PPStream conducted in June 2008 [87].

3.2.1 A Dynamic Window Resizing Scheme based on Adap-

tive Streaming Alone

A straightforward solution for dynamic window resizing, called Bandwidth First

Scheme (BFS), is to use adaptive streaming alone. Figure 3.2 shows a snapshot
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of a P2P live streaming system with a mesh overlay, where users 1 and 4 watch the

channel in a large window, and users 2, 3, 5, and 6 watch the same channel in a

small window. With BFS, the channel is encoded into two layers: a base layer and

an enhancement layer. Users with a large window (i.e., users 1 and 4) require both

the base layer and the enhancement layer, and users with a small window (i.e., users

2, 3, 5, and 6) require only the base layer.

Even though BFS can effectively reduce the total bandwidth consumption, i.e.

design goal 1, it cannot achieve design goals 2 and 3 as illustrated in the following

cases.

• Case 1 (cannot achieve design goal 2): Consider the case where user 6 increases

its window size from small to large, because he/she becomes interested in the

channel and wants a high resolution of the video. Since all neighbors of user

6 have a small window, user 6 must look for new large-window neighbors in

order to obtain the enhancement layer. However, the delay to find a new large-

window neighbor may be very large, and thus the time it takes for the user to

see a high-resolution video is too long to be acceptable.

• Case 2 (cannot achieve design goal 3): Consider user 4 which has a large window

and obtains the enhancement layer from user 1. If at some time, user 1 reduces

its window size from large to small, and then it does not have the enhancement

layer anymore. Since all neighbors of user 4 have a small window, user 4 cannot

obtain the enhancement layer from any of them. Consequently, it cannot provide

good streaming quality until it establishes a connection to a large-window user

or the streaming server as its new neighbor.
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3.2.2 Dynamic Window Resizing Schemes based on both Adap-

tive Streaming and User Cooperation

We propose cooperation among large-window users and small-window users. Intu-

itively, small-window users contribute part of their bandwidth to forward the en-

hancement layer so that a large-window user can easily locate and obtain the required

enhancement layer not only from large-window users but also from small-window

users. There are two possible reasons that a small-window user should forward the

enhancement layer.

• First, if a small-window user helps forward the enhancement layer, then it can

quickly obtain a high resolution video after resizing to a large window.

• Second, we can also introduce incentive mechanisms so that if a small-window

user helps forward the enhancement layer, as a reward it may have a higher

priority to obtain the enhancement layer from its neighbors when it changes to

a large window. However, these incentive mechanisms are out of the scope of

this chapter, and we only consider user cooperation in this chapter.

Problem Formulation

We consider a P2P streaming system with a streaming server O and a set of users

V . The set V = VL(t) ∪ VS(t) consists of two types of users: VL(t) is the set of users

with a large window at time t, and VS(t) is the set of users with a small window at

time t. We assume that the upload capacity of users is the only bottleneck for a P2P

live streaming system. That is, the download capacity of a user is higher than the

streaming rate, and bandwidth bottlenecks are located at the edges instead of the

core of the Internet, which are reasonable assumptions [78] for the current Internet.

When we use adaptive streaming, server O generates a video stream at constant
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rate R including the base layer and enhancement layer with streaming rates at RB

and RE, respectively. A small-window user i ∈ VS(t) requires only the base layer,

and its required streaming rate is then RB. A large-window user i ∈ VL(t) requires

both layers, and its required streaming rate is then RB + RE.

When we use user cooperation, small-window users contribute part of their band-

width to forward the enhancement layer so that a large-window user can easily locate

and obtain the requirement enhancement layer data not only from large-window users

but also from small-window users.

• There are two types of small-window users: some small-window users, called

helpers, contribute their bandwidth to forward the enhancement layer, and the

remaining small-window users, called non-helpers, do not forward any part of

the enhancement layer. Let VH(t) denote the set of helpers at time t, and VN(t)

denote the set of non-helpers at time t. We have VS(t) = VH(t) ∪ VN(t). Note

that, ∅ ⊆ VH(t) ⊆ VS(t). That is, VH(t) could be empty or could be VS(t).

• Let RH denote the download rate of a helper for the enhancement layer. Note

that 0 < RH ≤ RE. When RH < RE, a helper only helps forward part of

the enhancement layer, and when RH = RE, a helper helps forward the whole

enhancement layer. Note that the upload rate of a helper for the enhancement

layer is not limited to RH , since it can upload RH multiple times to different

neighbors. In order to simplify the protocol design, we assume that every helper

has the same RH .

The streaming quality of a P2P streaming system depends on many factors, such

as the overlay topology, the block scheduling algorithm, and the dynamic window

resizing scheme. In this chapter, in order to focus on the impact of a dynamic window

resizing scheme, we assume that a P2P streaming system has an overlay topology and
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a block scheduling algorithm which together can efficiently use the upload capacity

of each user. Specifically, we consider a mesh overlay topology, since it is the most

popular one used in commercial P2P streaming systems [40, 38, 84]. We consider a

random block scheduling algorithm, since it is simple to analyze and it can achieve

reasonably good streaming quality [33]. It is worth noting that our proposed schemes

can be used together with any block scheduling algorithm [33, 95, 48, 75].

Now we are ready to formally define the dynamic window resizing problem with

both adaptive streaming and user cooperation. We summarize the notation used in

the chapter in Table 3.1.

Design Goal 1: Efficient Bandwidth Consumption. The total download rate of

all users is given as follows, where the first term is the total required streaming rate

of all large-window users, the second term is the total required streaming rate of all

small-window users, and the last term is the total download rate of all helpers for the

enhancement layer.

|VL(t)|(RB + RE) + |VS(t)|RB + |VH(t)|RH (3.1)

Since the first two terms are fixed for any dynamic window resizing scheme, we only

need to minimize the third term (i.e., |VH(t)|RH) in order to achieve the first design

goal.

Design Goal 2: Good Streaming Quality at Resizing Events (i.e., Short Resizing

Delay for Small-Window Users). When a small-window user changes its window size

from small to large, the resizing delay depends on whether it can quickly obtain the

enhancement layer data from its neighbors. If its neighbors together have sufficient

available bandwidth and have the data for the whole enhancement layer, the small-

window user can quickly resize to a large window. Otherwise, the small-window
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Notation Description

V set of users. V = VL(t) ∪ VS(t)

VL(t) set of large-window users at time t

VS(t) set of small-window users at time t.

VS(t) = VH(t) ∪ VN(t)

VH(t) set of helpers at time t

VN(t) set of non-helpers at time t

Ni(t) set of neighbors of user i. Ni(t) = NLi(t) ∪NSi(t)

NLi(t) set of large-window neighbors of user i at time t

NSi(t) set of small-window neighbors of user i at time t.

NSi(t) = NHi(t) ∪NNi(t)

NHi(t) set of helper neighbors of user i at time t

DHi(t) number of helper neighbors of user i

which have distinct parts of the enhancement layer

NNi(t) set of non-helper neighbors of user i at time t

PS fraction of simultaneous resizing small-window users

RB rate of the base layer

RE rate of the enhancement layer

RH download rate of a helper for the enhancement layer

U total upload capacity of the system

ui(t) residual upload capacity of user i at time t

X PFS parameter: # of enhancement layer substreams

P̃S PPS parameter: estimate of PS

Table 3.1: Notation used in dynamic window resizing
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user must find new neighbors with more available bandwidth or more data for the

enhancement layer, which however causes longer resizing delay. Therefore, we consider

two types of bottlenecks: bandwidth bottleneck and content bottleneck.

• Bandwidth bottleneck: When a small-window user resizes to a large window, it

needs to get the whole enhancement layer from its neighbors. If its neighbors

together do not have sufficient available bandwidth for the enhancement layer,

the small-window user must find new neighbors with more available bandwidth.

This is called the bandwidth bottleneck.

To resolve the bandwidth bottleneck, a non-helper small-window user i ∈ VN(t)

at time t requires a total of RE available bandwidth for the whole enhancement

layer from all its large-window neighbors (denoted by NLi(t)) and helper small-

window neighbors (denoted by NHi(t)). Therefore, we require:

∑

j∈NLi(t)∪NHi(t)

uj(t)

max(1, |NSj(t)|PS)
≥ RE ∀i ∈ VN(t) (3.2)

where uj(t) denotes the residual upload bandwidth of user j at time t which is

the difference between its upload capacity and its average upload rate measured

in a recent time period before time t. The upload capacity of a user can be

measured [78] when the user joins the system and periodically after that, and

the average upload rate can be measured by keeping track of the number of

packets uploaded in a recent time period. We assume that the fraction of

small-window users who simultaneously resize to a large window at a time is

fixed, and let PS denote this fixed fraction. Note that our proposed solutions

do not make this assumption, and work with dynamic PS. To understand the

fraction
uj(t)

max(1,|NNj(t)|PS)
, let’s consider a neighbor j of user i. User j has |NSj(t)|

small-window neighbors, among which |NSj(t)|PS neighbors will resize to a large
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window. Therefore, the residual upload bandwidth uj(t) of user j will be shared

by |NSj(t)|PS resizing neighbors.

To resolve the bandwidth bottleneck, a helper small-window user i ∈ VH(t)

at time t requires a total of RE − RH available bandwidth for the remaining

enhancement layer from all its large-window neighbors and helper small-window

neighbors. Therefore, we require:

∑

j∈NLi(t)∪NHi(t)

uj(t)

max(1, |NSj(t)|PS)
≥ RE −RH ∀i ∈ VH(t) (3.3)

• Content bottleneck: When a small-window user resizes to a large window, it

needs to get the whole enhancement layer from its neighbors. If its neighbors

together do not have the whole enhancement layer, the small-window user must

find new neighbors with more enhancement layer data. This is called the content

bottleneck.

To resolve the content bottleneck, a small-window user i ∈ VS(t) at time t

requires:

|NLi(t)|RE + DHi(t)RH ≥ RE ∀i ∈ VS(t) (3.4)

where DHi(t) denote the number of helper neighbors which have distinct parts

of the enhancement layer. For example, if two helpers have the same part of the

enhancement layer, they are counted as only one helper in DHi(t). Intuitively,

this constraint means that a small-window user i must have at least one large-

window neighbor (or the streaming server), or its helper neighbors together have

the whole enhancement layer data.

Design Goal 3: Good Streaming Quality at Other Times. If a dynamic window

resizing scheme can achieve design goal 2, then it, together with an efficient overlay
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topology and an efficient block scheduling algorithm, can also achieve design goal 3.

When Inequalities (3.2), (3.3) and (3.4) hold, we can construct a P2P network

which achieves good streaming quality. Thus, the goal of dynamic window resizing

problem with both adaptive streaming and user cooperation is

min |VH(t)|RH subject to constraints (3.2), (3.3) and (3.4) (3.5)

Proposed Solutions

In order to design simple and efficient P2P streaming systems, we follow two ap-

proaches to tackle the dynamic window resizing problem (3.5): keep |VH(t)| fixed and

then minimize RH , or keep RH fixed and then minimize |VH(t)|. Therefore, we have

the following two schemes.

• First scheme: Every small-window user is a helper. That is, VH(t) = VS(t). Ev-

ery helper forwards only a fraction of the enhancement layer. That is, RH < RE.

In this case, we should minimize RH in order to minimize |VH(t)|RH . Partial

Forwarding Scheme (PFS) [53] described in Section 3.3 follows this approach.

• Second scheme: Only some small-window users are helpers. That is, VH(t) ⊆
VS(t). Every helper forwards the whole enhancement layer. That is, RH = RE.

In this case, we should minimize |VH(t)| in order to minimize |VH(t)|RH . Partial

Participation Scheme (PPS) [88] described in Section 3.4 follows this approach.

In this chapter, we compare the performance of PFS and PPS with two other

reference schemes.

• Bandwidth-First Scheme (BFS) described in Section 3.2.1 does not have any

helpers. That is |VH(t)| = 0, and then |VH(t)|RH = 0. Therefore, BFS consumes
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the minimum amount of bandwidth. However, as we discussed before, BFS may

have long resizing delay and poor streaming quality.

• Quality-First Scheme (QFS): Every small-window user is a helper, and every

helper forwards the whole enhancement layer. That is, VH(t) = VS(t) and

RH = RE. Therefore, QFS can achieve the smallest resizing delay and the best

streaming quality. However, QFS consumes the maximum amount of band-

width.

Intuitively, if we consider both variables |VH | and RH together (referred to as

joint minimization), we may obtain a better solution in the sense that we can further

reduce the total amount of streaming traffic. There are two major reasons that we

choose to separately minimize each variable (referred to as separate minimization).

• 1) Joint minimization implies that only some small-window users are helpers,

and each helper has only part (possibly different fractions) of the enhancement

layer. Even though joint minimization can further reduce the total amount of

streaming traffic, it considerably complicates the design and implementation of

the user cooperation scheme and also requires more control messages.

• 2) Our simulation results shown in Section 3.5 demonstrate that separate mini-

mization consumes significantly less bandwidth than QFS (i.e., the upper bound),

and consumes only slightly more bandwidth than BFS (i.e., the lower bound).

Therefore, we feel that even though joint minimization can further reduce the

total amount of streaming traffic, it can consume only slightly less bandwidth

than separate minimization.
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3.3 Partial Forwarding Scheme (PFS)

In this section, we explain how PFS [53] works and how to set its parameters. The

evaluation of PFS is presented in Section 3.5.

3.3.1 General Idea

In PFS, the enhancement layer is divided into X ≥ 1 substreams, where X is the

only parameter of PFS. Every small-window user is a helper and helps to forward a

substream of the enhancement layer. For example, in Figure 3.3, we have VL(t) =

{1, 4}, and VS(t) = VH(t) = {2, 3, 5, 6}. If at some time small-window user 6 changes

to a large window, it can quickly get substream 2 from helpers 3 and 5, and thus

achieve very short window resizing delay. If at some time large-window user 1 changes

to a small window, it has only the base layer and one substream, say substream 2.

In this case, its large-window neighbor 4 can still get substream 1 from helper 2 and

get substream 2 from helpers 1 and 5, and thus it can still maintain good streaming

quality.

Since every small-window user is a helper, we have VH(t) = VS(t). Since a helper

only needs to download one substream of the enhancement layer, we have RH =

RE/X. Therefore, we should minimize |VH(t)|RH = |VS(t)|RE/X in order to solve

dynamic window resizing problem (3.5). Since both |VS(t)| and RE are independent

of PFS, the goal of PFS is to

max X subject to constraints (3.2), (3.3) and (3.4) (3.6)
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Figure 3.3: With PFS, every small-window user is a helper, and helps to forward
a substream of the enhancement layer. In this figure, the whole enhancement layer
(denoted by E) is divided into two substreams (denoted by S1 and S2).

3.3.2 Implementation Details

There are various ways [43] to divide the enhancement layer to substreams. A simple

way is to divide the enhancement layer using its packet sequence number, as illus-

trated in Figure 3.4. A small-window user is randomly assigned to one substream,

and then it keeps forwarding this substream until it leaves the system. In addition,

every user should monitor the status of its neighbors, and maintain a sufficient (as

typically required by the overlay topology and block scheduling algorithm) and bal-

anced (i.e. with both large-window neighbors and small-window neighbors, and with

small-window users with different substreams) group of neighbors. Peers can get the

status information by periodically exchanging the local information. This information

can be added in the ordinary video packets.

Ideally, all small-window peers in PFS are required to be helpers. But in practice,

different users have different amounts of upload bandwidth. Some users may have

limited upload capacities which are less than RB + RE, and they can still work as
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Figure 3.4: A simple way to divide the enhancement layer into X substreams.

helpers as long as their upload capacities are at least RB + RE/X. Some user may

have very limited upload capacities which are even lower than RB +RE/X, and these

peers are not required to play as helpers.

3.3.3 Parameter Setting

In this section, we study the impact of parameter X on the bandwidth bottleneck

constraints (3.2) and (3.3) and on content bottleneck constraint (3.4).

Impact of X on Bandwidth Bottleneck Constraints

With PFS, every small-window user is a helper, so we do not need to consider band-

width bottleneck constraint (3.2) for non-helpers. With PFS, we have VH(t) = VS(t)

and RH = RE/X, and therefore bandwidth bottleneck constraint (3.3) for a small-

window user i (i.e., a helper) can be rewritten as follows.

∑

j∈NLi(t)∪NHi(t)

uj(t)

max(1, |NSj(t)|PS)
≥ RE

(
1− 1

X

)
∀i ∈ VS(t) (3.7)

Note that, each small-window user requires a total of RE/X enhancement layer data

from its neighbors, and thus the residual upload capacity (i.e., uj(t)) of its neighbors
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depends on X. Since both sides of Inequality (3.7) depend on X, it is hard to see the

impact of X on the inequality. Therefore, below we consider the worst case scenario

for bandwidth bottleneck constraint (3.3).

Let’s consider a case where every user is a small-window user (i.e., NLi(t) = ∅ ∀i,
VL(t) = ∅, and thus NHi(t) = NSi(t) = Ni(t) ∀i and VH(t) = VS(t) = V (t)) and every

user switches to a large window at that time (i.e., PS = 1). This is the worst case,

since the case requires the largest amount of residual upload capacity. In this case,

bandwidth bottleneck constraint (3.3) for a user i can be rewritten as follows.

∑

j∈Ni(t)

uj(t)

|Nj(t)| ≥ RE

(
1− 1

X

)
∀i ∈ V (t) (3.8)

We sum the above inequality over all users, and we have

∑

i∈V (t)

∑

j∈Ni(t)

uj(t)

|Nj(t)| ≥ |V (t)|RE

(
1− 1

X

)
(3.9)

The left side can be rewritten as follows, where U denotes the total upload capacity

of the P2P streaming system.

∑

i∈V (t)

∑

j∈Ni(t)

uj(t)

|Nj(t)| =
∑

j∈V (t)

∑

i∈Nj(t)

uj(t)

|Nj(t)| =
∑

j∈V (t)

uj(t) = U−|V (t)|(RB+
RE

X
) (3.10)

We can see that Inequality (3.9) holds as long as U ≥ |V (t)|(RB+RE). That is, the

whole P2P streaming system should have sufficient upload capacity to stream both the

base layer and the enhancement layer to every user. Obviously, this condition must

be true for the worst case scenario for any P2P streaming scheme supporting dynamic

window resizing including PFS and PPS; otherwise, the system simply does not have

sufficient upload capacity when every user has a large window. If U ≥ |V (t)|(RB+RE)

and the system upload capacity is fairly allocated to every user, which is true for most
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P2P streaming systems [40], Inequality (3.8) also holds.

Finally, as long as the whole P2P streaming system has sufficient upload capacity

(i.e., U ≥ |V (t)|(RB+RE)), and the system upload capacity is fairly allocated to every

user, bandwidth bottleneck constraint (3.3) is satisfied. Note that, parameter X does

not affect the constraint, and intuitively this is because PFS uniformly distributes

the extra traffic load to every small-window user.

Impact of X on Content Bottleneck Constraint

The content bottleneck constraint (3.4) for a small-window user i can be rewritten as

|NLi(t)|RE +
DHi(t)

X
RE ≥ RE ∀i ∈ VS(t) (3.11)

Therefore, in order to satisfy this constraint, we should choose at least one large-

window neighbor for a small-window user (i.e., |NLi(t)| ≥ 1), or make sure that all

small-window neighbors together have all X distinct enhancement layer substreams

(i.e., DHi(t) = X). If there are very few large-window users in the system, it is

impossible to have a large-window neighbor for each small-window user. Therefore,

below we study how to choose the value of X so that all small-window neighbors of

a user together have all X distinct substreams with a high probability.

Let’s consider a user i with a total of Ni(t) neighbors at time t. If user i does not

have any large-window user, all Ni(t) neighbors are small-window neighbors. That

is, Ni(t) = NSi(t) = NHi(t). Each small-window user is randomly assigned with a

substream, and therefore, the probability that the Ni(t) neighbors of user i together

have all X distinct substreams can be calculated by P (Ni(t), X) as follows.

P (Ni(t), X) =
X−1∑

k=0

(−1)k

(
X

k

)(
1− k

X

)Ni(t)

(3.12)
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Intuitively, expression
(

X
k

) (
1− k

X

)Ni(t) is the probability that at least k substreams

are unavailable among the Ni(t) neighbors, and expression (−1)k is introduced ac-

cording to the inclusion-exclusion principle [15].

As discussed before, to achieve the PFS goal (3.6), we should choose an X as large

as possible. To satisfy the content bottleneck constraint (3.4), we should choose the

value of X so that P (Ni(t), X) is close to 1. However, probability P (Ni(t), X) is

a decreasing function of X. That is, there is a tradeoff between the PFS goal and

the content bottleneck. Therefore, we choose the maximum X such that probability

P (Ni(t), X) is at least 90%. Figure 3.6 plots the maximum X so that P (Ni(t), X) ≥
90% as Ni(t) varies from 1 to 100. Figure 3.7 plots the ratio of the maximum X

and Ni(t). For example, for a P2P streaming system with 32 neighbors per user,

the ratio is about 0.25. That is, the maximum X so that P (32, X) ≥ 90% is about

32×0.25 = 8. As another example, for a system with 64 neighbors per user, the ratio

is about 0.2. That is, the maximum X so that P (64, X) ≥ 90% is about 64×0.2 = 13.

Finally, if the average number of neighbors (denoted by N) of a P2P system is

between 10 and 50, we recommend to set X to N × 0.25 = N/4. If N is between 50

and 100, we recommend to set X to N × 0.2 = N/5.

Extreme Cases of X

We can see that X is a number in [1, +∞). There are two extreme cases.

• When X approaches +∞, a small-window user does not forward any enhance-

ment layer packet. This extreme case is Bandwidth-First Scheme (BFS).

• When X is 1, every user has both the base layer and the whole enhancement

layer. This extreme case is Quality-First Scheme (QFS).
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Figure 3.5: The maximum X such that probability P (Ni(t), X) is at least 90%, as
Ni(t) increases from 1 to 100.

Compared to BFS, a small-window user in PFS experiences shorter window resiz-

ing delay when it changes to a large window for the following reasons: (1) It already

has one substream of the enhancement layer and it only needs to find the other X−1

substreams instead of the whole enhancement layer; (2) It can get the enhancement

layer not only from its large-window neighbors, but also from its small-window neigh-

bors. Compared to BFS, a large-window user can also benefit from PFS. If one

large-window neighbor of a large-window user changes to a small window, this user

can still get the enhancement layer not only from other large-window neighbors, but

also from its small-window neighbors.

Compared to QFS, PFS is more bandwidth-efficient. A small-window user in PFS

requests only one substream instead of the whole enhancement layer. The larger the

X is, the less the amount of bandwidth consumed by PFS.
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Figure 3.6: The maximum X such that probability P (Ni(t), X) is at least 90%, as
Ni(t) increases from 1 to 100.

3.4 Partial Participation Scheme (PPS)

In this section, we propose Partial Participation Scheme (PPS), which is an extension

of our previous work [88]. The evaluation of PPS is presented in Section 3.5.

3.4.1 General Idea

In PPS, only some small-window users are helpers. That is, VH(t) ⊆ VS(t). But

every helper helps to forward the whole enhancement layer. That is, RH = RE. With

PPS, a large-window user can find and obtain the enhancement layer not only from

other large-window users, but also from these helpers. For example, in Figure 3.8,

we have VL(t) = {1, 4}, and VS(t) = VH(t) ∪ VN(t), where VH(t) = {2} and VN(t) =

{3, 5, 6}. When small-window user 6 changes to a large window, it can quickly get the

enhancement layer from helper 2. If large-window user 1 changes to a small window,

its large-window neighbor 4 can still get the enhancement layer from helper 2.

Since a helper needs to download the whole enhancement layer, we have RH = RE.
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Figure 3.7: If 10 ≤ Ni(t) < 50, the ratio is around 0.25. If 50 ≤ Ni(t) ≤ 100, the
ratio is around 0.20.

Therefore, we should minimize |VH(t)|RH = |VH(t)|RE in order to solve dynamic

window resizing problem (3.5). Since RE is independent of PPS, the goal of PPS is

to

min |VH(t)| subject to constraints (3.2), (3.3) and (3.4) (3.13)

We have the following design guidelines in order to minimize |VH(t)| while still

satisfying constraints (3.2) and (3.4). Note that, since RH = RE, a helper can resize

to a large window without any resizing delay. Therefore, we do not need to consider

bandwidth bottleneck constraint (3.3) for helpers.

• Design Guideline 1: PPS should select small-window users with high upload

capacity as helpers.

This is to minimize the total number of helpers (i.e., |VH(t)|) while maximizing the

total available bandwidth of all helpers (i.e., maximize the uj(t) in bandwidth bottle-

neck constraint (3.2) for non-helpers). In addition, a user with higher upload capacity

tends to have more number of neighbors (peers with higher upload capacity can serve
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Figure 3.8: With PPS, some small-window users, called helpers, help to forward the
whole enhancement layer.

more requests, and their neighbors are willing to connect with them). Therefore, a

helper with higher upload capacity can also benefit more number of large-window

users.

In order to satisfy the bandwidth bottleneck constraint (3.2) for non-helpers, we

also have the following design guideline.

• Design Guideline 2: PPS should maintain an appropriate number of helpers

in the system, so that when a small-window user resizes to a large window, its

current large-window neighbors and helper neighbors together have sufficient

residual upload bandwidth to forward the whole enhancement layer to the user.

Intuitively, the second design guideline adjusts the number of helpers (i.e., |VH(t)|)
in the system to satisfy constraint (3.2).

Finally, in order to satisfy the content bottleneck constraint (3.4), PPS should

maintain at least one larger-window user (i.e., |NLi(t)| ≥ 1) or one helper (i.e.,

|NHi(t)| ≥ 1 and thus DHi(t) = 1) as a neighbor of a user. Note that, this is

naturally true if PPS follows the second design guideline.
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3.4.2 Implementation Details

All users in PPS form a mesh-based overlay. A user may have different types of

neighbors. For example, a large-window user may have helper neighbors and non-

helper neighbors, in addition to large-window neighbors. When a large-window user

and a helper are neighbors, they can forward both the base layer and the enhancement

layer to each other. When a helper resizes to a large window, it can resize to a large

window without any resizing delay.

Every user periodically exchanges information, including the buffer map, user

state, neighbor information, and residual bandwidth, with its neighbors. A buffer

map of user i indicates which blocks it has already obtained. The user state of user i

indicates whether it is a large-window user, a helper, or a non-helper. The neighbor

information of user i contains the number of its large-window neighbors (i.e., |NLi|(t)),
the number of its helper neighbors (i.e., |NHi(t)|), and the number of its non-helper

neighbors (i.e., |NNi(t)|). The residual bandwidth of user i (i.e., ui(t)) is the difference

between its upload capacity and its average upload rate measured in a recent time

period. The total amount of control traffic is comparable to other P2P streaming

schemes, since the buffer map is common for P2P streaming schemes, and only a few

more bytes are needed to represent the user state, neighbor information, and residual

bandwidth.

A large-window user or a helper maintains a list of good neighbors by periodi-

cally finding new neighbors with high residual bandwidth and removing the current

neighbors with a low upload rate. Below, we describe how a non-helper maintains its

neighbors and how a new user joins the system by following the two design guidelines.
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Neighbor Maintenance

Each non-helper periodically monitors the status of its neighbors by exchanging user

information with its neighbors, and then maintains a list of good neighbors by fol-

lowing the two design guidelines. Specifically, non-helper i gets information uj(t)

and |NNj(t)| from each neighbor j, and then it periodically checks the bandwidth

bottleneck constraint (3.2) by checking whether the following condition is satisfied.

∑

j∈NLi(t)∪NHi(t)

uj(t)

max(1, |NNj(t)|P̃S)
≥ RE (3.14)

where P̃S is a PPS parameter used to estimate the value of PS which is the fraction

of small-window users who simultaneously resize to a large window at a time. This

follows the second design guideline.

Every time non-helper i finds that Inequality (3.14) is not satisfied, it takes the

following two steps.

• Step 1: find one more large-window neighbor or helper neighbor. It contacts

its neighbors to get the list of their neighbors. Among the users in this list,

non-helper i finds the one, say user j, which has the highest residual upload

bandwidth and is either a large-window user or a helper, and then establishes

a connection with user j. If the total number of neighbors of non-helper i

becomes larger than a threshold, the neighbor with the lowest streaming rate to

non-helper i will be disconnected. If Inequality (3.14) is still not satisfied after

adding new neighbor j, then non-helper i takes the second step.

• Step 2: submit a request for one more helper. Among all non-helper neighbors,

non-helper i finds the one, say user j, with the highest residual upload band-

width, and then sends a request which asks user j to change to a helper. This
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follows the first design guideline.

Every time non-helper i finds that Inequality (3.14) is satisfied, it takes the fol-

lowing two steps.

• Step 1: determine whether there are too many helpers. It checks whether the

left-hand side Inequality (3.14) is considerably greater than (e.g., more than 1.5

times) the right-hand side, and checks whether the total number of its large-

window neighbors and helper neighbors is more than half of the total number

of its neighbors. If so, it takes the second step.

• Step 2: submit a request to reduce the number of helpers. Among all helper

neighbors, non-helper i finds the one, say user j, which has the lowest upload

bandwidth, and then sends a request which asks user j to change back to a

non-helper.

When a peer receives requests for more helpers or for reducing helpers, it makes the

decision based on its local information. In our simulation, a non-helper peer becomes

a helper when it receives the request for one more helper, while it terminates the

enhancement layer forwarding after receiving 3 consecutive reducing requests.

New Users

When a new user joins the system, it should obtain a list of neighbors satisfying the

following conditions.

• First, if the new user has a small window, all of its neighbors together should

be able to provide the base layer to it. If the new user has a large window, all

of its neighbors together should be able to provide both the base layer and the
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enhancement layer to it. For a small-window new user i, we have

∑

j∈Ni(t)

uj(t) ≥ RB (3.15)

For a large-window new user i, we have

∑

j∈Ni(t)

uj(t) ≥ RB + RE (3.16)

• Second, if the new user has a small window, it is a non-helper and all its

large-window neighbors and helper neighbors should satisfy Inequality (3.14)

according to the second design guideline.

In order to satisfy the above two conditions, a new user first contacts the track

server to get a random list of users. If these users cannot satisfy the first condition

(i.e., Inequality (3.15) or Inequality (3.16)), the new user contacts the neighbors of

its current neighbors until finally the first condition is satisfied. If the new user has

a small window and the second condition is not satisfied (i.e., Inequality (3.14)), the

new user follows the neighbor maintenance steps described in the previous subsection.

3.4.3 Parameter Setting

PPS parameter P̃S should be set according to the fraction of small-window users who

simultaneously resize to a large window at a time. In practice, this fraction may

change over time, and therefore, we set P̃S to the average fraction of the system

measured in a recent time period. Note that, a system with a large number of

resizing events does not necessarily have many synchronized resizing events, since

these resizing events may happen at different times.

The setting of P̃S is also influenced by the bandwidth distribution of user. In-
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tuitively, the greater the number of high bandwidth users, the greater the number

of feasible values of P̃S. In a system with many high-bandwidth users, we can set

very high P̃S without impairing the system streaming quality. However, in a system

with few high-bandwidth users, a very high P̃S causes many small-window users to

download the extra enhancement layer, which in turn aggravates the competition for

the limited bandwidth. Therefore, in a system with few high-bandwidth users, an

inappropriately high P̃S may impair the system streaming quality. In general, it is

safer for PPS to have a small P̃S instead of a large one.

There are two extreme cases of PPS.

• When P̃S is very small, like 1%, denominator max(1, |NNj(t)|P̃S) in Inequal-

ity (3.14) becomes 1. In this case, PPS assumes that among all non-helper

neighbors of user j, only one of them may change to a large window in the near

future. Therefore, there are very few helpers. That is, |VH(t)| is very small.

Note that, this extreme case consumes slightly more bandwidth than BFS.

• When P̃S is 100%, denominator max(1, |NNj(t)|P̃S) in Inequality (3.14) becomes

|NNj(t)|. In this case, PPS assumes that all non-helper neighbors of user j may

simultaneously change to a large window in the near future. Therefore, this

extreme case has more helpers than the first extreme case. Typically, users in

a P2P streaming system have heterogeneous upload capacity, and the upload

capacity of some users (e.g., 1Mbps) is more than ten times of that of some

other users (e.g., 128Kbps). Since PPS follows the first design guideline and

select users with high upload capacity as helpers, the total number of helpers

in this extreme case is still much less than the total number of small-window

users. That is, |VH(t)| ¿ |VS(t)|. Note that this extreme case consumes much

less bandwidth than QFS.
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3.4.4 Bandwidth Consumption of All Schemes

In this subsection, we analytically compare the total bandwidth consumption of all

schemes according to (3.1).

For PFS with parameter X, we have VH(t) = VS(t) and RH = RE/X. Therefore,

its total bandwidth consumption is

|VL(t)|(RB + RE) + |VS(t)|RB + |VS(t)|RE

X
(3.17)

For PPS with parameter P̃S, we have VH(t) ⊆ VS(t) and RH = RE. Therefore, its

total bandwidth consumption is

|VL(t)|(RB + RE) + |VN(t)|RB + |VH(t)|RE (3.18)

where both |VN(t)| and |VH(t)| depend on its parameter P̃S due to Inequality (3.14).

For BFS, we have VH(t) = ∅ and RH = 0. Therefore, its total bandwidth con-

sumption is

|VL(t)|(RB + RE) + |VS(t)|RB (3.19)

For QFS, we have VH(t) = VS(t) and RH = RE. Therefore, its total bandwidth

consumption is

|VL(t)|(RB + RE) + |VS(t)|(RB + RE) (3.20)

3.5 Simulation Results

In this section, we evaluate the performance of PFS and PPS using our packet-

level P2P streaming simulator, which is an extension of the P2P streaming simulator

originally developed by Zhang et al [95]. We simulate a P2P streaming system,
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where users join and leave the system following a real-world trace of a P2P streaming

system [95]. We simulate a mesh overlay topology. We simulate the random block

scheduling algorithm [33], but other block scheduling algorithms should not change

the relative performance of these dynamic window resizing schemes. There are at

most 1000 concurrent users, and each with an average of about 16 neighbors by

default. Users have heterogeneous upload capacity, and on average there are 23% of

users with 1 Mbps rate, 46% of users with 384 Kbps rate, and 31% of users with 128

Kbps rate. The upload capacity of the streaming server is 2 Mbps. The stream is

encoded into the base layer and one enhancement layer at a rate of 100 Kbps and 230

Kbps, respectively.

We simulate the following two types of dynamic window resizing.

• Random Window Resizing : Each user independently resizes its window size. A

small-window user changes to a large window after an exponentially distributed

time with mean 1/λ. A large-window user changes to a small window after an

exponentially distributed time with mean 1/µ. In this case, the average resizing

interval is ( 1
λ

+ 1
µ
)/2 = (λ+µ)/(2λµ). There is an average of µ/(λ+µ) fraction

of small-window users, and an average of λ/(λ + µ) fraction of large-window

users.

• Synchronized Window Resizing : A PS percent of small-window users simulta-

neously change to a large window. For example, some users watching a movie

may resize their windows when commercial ads are played during the movie,

and then simultaneously change back to the full-screen window after the ads.

We simulate the following six dynamic window resizing schemes.

• PFS with X = 16: In this case, PFS divides the enhancement layer into 16

substreams. By default, every user in our simulation has about 16 neighbors,
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so 16 is the upper bound of X.

• PFS with X = 4: In this case, PFS divides the enhancement layer into 4

substreams. This is our recommended value of X.

• PPS with P̃S = 1%. In this case, the value of max(1, |NNj(t)|P̃S) in Inequal-

ity (3.14) is 1. That is, PPS assumes that among all non-helper neighbors of a

user, only one of them may change to a large window in the near future.

• PPS with P̃S = 100%. In this case, the value of max(1, |NNj(t)|P̃S) in Inequal-

ity (3.14) is |NNj(t)|. That is, PPS assumes that all non-helper neighbors of a

user may simultaneously change to a large window in the near future.

• BFS. This is simulated as a reference scheme which consumes the least amount

of bandwidth.

• QFS. This is simulated as a reference scheme which achieves the shortest resizing

delay and best streaming quality.

According to our three design goals, we evaluate the following performance metrics

for each scheme and for each simulation.

• Average Bandwidth Consumption: This is measured by the ratio of the total

download rate of all users to the total number of users. Note that, this includes

both the download rate of video packets and also the rate of control packets.

• Resizing Delay of Small-Window Users : This is indirectly measured by the

average playback continuity between 1.5 and 2 seconds after a small-window

user starts to resize to a large window. A high playback continuity implies that

the user has short resizing delay.
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Figure 3.9: Every PFS and PPS scheme’s consumed bandwidth is close to BFS, and
much less than that of QFS.

• Average Stream Quality : This is measured by the average playback continuity

of all users in the whole simulation. For small-window peers, the playback

continuity is the percentage of base layer packets being received on time. While

for a large-window peer, it is the percentage of both base layer and enhancement

layer packets received on time.

3.5.1 Impact of the Resizing Interval

In this subsection, we investigate the impact of the resizing interval on the perfor-

mance of dynamic window resizing schemes. We simulate the random window resizing.

We select the values of λ and µ so that there is an average of 20% of large-window

users (i.e. λ/(λ+µ) = 20%), and the average resizing interval varies from 100 seconds,

to 500 seconds, and 1000 seconds (i.e., (λ + µ)/(2λµ) =100, 500, and 1000).

Figure 3.9 shows the average bandwidth consumption of each scheme. We can see

that BFS consumes the least amount of bandwidth, whereas QFS consumes the most
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Figure 3.10: PPS with similar bandwidth consumption as PFS can achieve shorter
resizing delay than PFS.

amount of bandwidth. The average download rate of BFS includes the download rate

of video packets (i.e., (|VL(t)|(RB +RE)+ |VS(t)|RB )/|V (t)| = 0.2×330+0.8×100 =

146 Kbps) and that of control packets (about 20 Kbps). The average download rate of

QFS includes the download rate of video packets (i.e., (|VL(t)|(RB+RE)+|VS(t)|(RB+

RE))/|V (t)| = 330 Kbps) and that of control packets (about 20 Kbps). We can also

see that the amount of bandwidth consumed by every PFS and PPS scheme is close to

that of BFS, and much less than that of QFS. As we expected, PFS with a smaller X

consumes more bandwidth, and PPS with a higher P̃S consumes more bandwidth. We

notice that PFS with X = 4 consumes approximately the same amount of bandwidth

as PPS with P̃S = 100%.

We can also see the average resizing interval has little impact on the average band-

width consumption. As the average resizing interval decreases, the average bandwidth

consumption increases slightly for the following reason. A user requests and down-

loads a video packet up to ∆t seconds before its playback deadline to make sure that

the stream can be played smoothly. In our simulator, ∆t is set to 10 seconds. When
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Figure 3.11: All PFS and PPS schemes achieve streaming quality very close to QFS,
and much better than BFS.

a large-window user resizes to a small window at time t, it has already downloaded

the enhancement layer packets between time t and t+∆t. Therefore, the smaller the

average resizing interval, the higher the impact of this ∆t.

Figure 3.10 shows the average playback continuity between 1.5 and 2 seconds after

a small-window user starts to resize to a large window. This is used to indirectly show

the resizing delay. We can see that BFS has the lowest playback continuity (i.e.,

the longest resizing delay), and QFS has the highest playback continuity (actually

100%, that is, no resizing delay). As we expected, PFS with a smaller X has higher

playback continuity, and PPS with a higher P̃S has higher playback continuity. We

can also see that PPS with P̃S = 100% has higher playback continuity than PFS with

X = 4, even though they consume approximately the same amount of bandwidth in

Figure 3.9. That is, PPS can achieve shorter resizing delay than PFS while consuming

similar amount of bandwidth as PFS. In other words, PPS can more efficiently use

the bandwidth of helpers than PFS.

We notice that sometimes frequent resizing events may shorten the resizing delay



www.manaraa.com

53

of BFS and PFS, which seems to be counterintuitive. This is because users in BFS and

PFS do not maintain their neighbor lists as actively as users in PPS, and sometimes

frequent resizing events may make the large-window users more evenly distributed

in the overlay. Therefore, in case of frequent resizing events, users resizing to a

large window may have a better chance of obtaining the enhancement layer directly

from their neighbors. Consequently, although the overall system streaming quality is

usually impaired by frequent resizing events, the local resizing delay of users may be

shortened by them.

Figure 3.11 shows the average playback continuity of all users in the whole simula-

tion, as a measurement of the streaming quality. We can see that all schemes achieve

better streaming quality as the average resizing interval becomes longer. This is be-

cause every resizing event may change the packets that a user needs to download and

upload, and may change the neighbors of the user, and therefore interferes the video

streaming. We can also see that all PFS and PPS schemes achieve streaming quality

very close to QFS, and much better than BFS.

3.5.2 Impact of the Fraction of Large-Window Users

In this subsection, we study the impact of the fraction of large-window users on the

performance of dynamic window resizing schemes. We simulate the random window

resizing. We select the values of λ and µ so that the average resizing interval is

500 seconds, and the fraction of large-window users varies from 20% to 70% (i.e.

λ/(λ + µ) = 20% to 70%).

Figure 3.12 shows the average bandwidth consumption of each scheme. We can

see that except QFS, all schemes consume more bandwidth as the fraction of large-

window users increases. We can also see that the bandwidth difference between

different schemes becomes smaller as the fraction of large-window users increases.
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Figure 3.12: The bandwidth consumption difference between different schemes be-
comes smaller as the fraction of large-window users increases.
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Figure 3.13: PFS with the recommended X (i.e., 4) and PPS can maintain short
resizing delay independent of the large-window user fraction.
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Figure 3.14: When there are a significant number of large-window users (like ≥ 50%),
BFS can also achieve good streaming quality.
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Figure 3.16: PFS with the recommended X and PPS achieve short resizing delay for
any number of neighbors.
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Figure 3.17: All PFS and PPS schemes achieve streaming quality very close to QFS,
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This is because the bandwidth difference between different schemes depends on the

number of small-window users.

Figure 3.13 shows the playback continuity between 1.5 and 2 seconds after a

small-window user starts to resize to a large window. We can see that parameter P̃S

of PPS is more insensitive to the fraction of large-window users than parameter X of

PFS. Because PPS with both P̃S = 100% and 1% can maintain short resizing delay

for different fractions of large-window users. However, PFS with X = 16 has long

resizing delay when the fraction of large-window users is small.

Figure 3.14 shows the average playback continuity of all users in the whole sim-

ulation. We can again see that all PFS and PPS schemes achieve streaming quality

very close to QFS, and better than BFS. We can also see that when there are a sig-

nificant number of large-window users (like more than 50%), BFS can also achieve

good streaming quality.

3.5.3 Impact of the Number of Neighbors

We evaluate the impact of the number of neighbors on the performance dynamic win-

dow resizing schemes. As there are more neighbors, a small-window user resizing to a

large window is more likely to find large-window neighbors and can more quickly get

the enhancement layer. However, as the number of neighbors increases, the number of

control packets also increases, which in turn consumes more bandwidth. We simulate

random window resizing with an average resizing interval of 500 seconds and 30% of

large-window users. The average number of neighbors varies from 10 to 40.

Figure 3.15 shows the average bandwidth consumption of each scheme. We can

see that more neighbors lead to more control overhead, and thus higher bandwidth

consumption.

Figure 3.16 shows the playback continuity between 1.5 and 2 seconds after a



www.manaraa.com

58

small-window user starts to resize to a large window. We can see that Figure 3.16

shows a similar trend as Figure 3.13. Parameter P̃S of PPS is more insensitive to

the number of neighbors than parameter X of PFS, and PFS with X greater than the

recommended value has long resizing delay when the number of neighbors is small.

Figure 3.17 shows the average playback continuity of all users in the whole sim-

ulation. We can again see that all PFS and PPS schemes achieve streaming quality

very close to QFS, and much better than BFS. We can also see that even when there

are a significant number of neighbors (such as 40), the streaming quality of BFS is

still much worse than that of other schemes.

Overall, we can see that increasing the number of neighbors can reduce the resizing

delay and improve the streaming quality of BFS and PFS with a large X (e.g., 16),

however, at a cost of higher bandwidth consumption. For PFS with the recommended

X (i.e., 4) and PPS with any P̃S, it is better to maintain a not very large number

of neighbors. Because a very large number of neighbors increase the bandwidth

consumption but do not improve the streaming quality.

3.5.4 Impact of Synchronized Window Resizing

In this subsection, we study the impact of synchronized window resizing. We simulate

a P2P streaming system, which initially has 20% large-window users and 80% small-

window users. No user changes its window size during the first 500 seconds. At second

500, PS percent of small-window users simultaneously change to a large window, and

all large-window users do not change their window size. We vary PS from 20% to

100%. For example, if PS = 100%, all small-window users change to a large window

at second 500.

Figure 3.18 shows the playback continuity between 1.5 and 2 seconds after the

resizing event (i.e., between second 501.5 and second 502). We can see that parameter
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Figure 3.18: Both PPS with P̃S = 100% and PFS with the recommended X = 4
achieve good playback continuity even in the extreme case with PS = 100%.

P̃S of PPS is more sensitive to PS than parameter X of PFS. PFS schemes with both

X = 4 and X = 16 can maintain similar resizing delay with different PS’s. However,

the playback continuity of PPS with P̃S = 1% drops very quickly as PS becomes much

larger than P̃S. This implies that PPS with P̃S significantly lower than the actual PS

cannot achieve good streaming quality.

3.6 Conclusion and Discussion

In this chapter, we give a comprehensive study about dynamic window resizing. We

formulate the problem as minimizing bandwidth consumption but still achieving short

resizing delay, and maintaining good streaming quality in case of dynamic window

resizing. In order to design simple and efficient P2P streaming systems for dynamic

window resizing, we study two schemes which represent totally two different design

philosophies - load is balanced and is distributed to all peers (PFS) and load is focused

on super peers (PPS). PFS is very simple to implement and can achieve good stream-
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ing quality. PPS is more complicated than PFS but it can achieve better streaming

quality than PFS while consuming the same amount of bandwidth as PFS. In addi-

tion, PFS and PPS are suitable for different types of P2P streaming systems. The

parameter setting of PFS is sensitive to some dynamic characteristics (e.g., dynamic

resizing intervals, dynamic fractions of large-window users, and dynamic numbers

of neighbors) but the dynamic fractions of simultaneous resizing users, whereas the

parameter setting of PPS is insensitive to most dynamic characteristics but the dy-

namic fractions of simultaneous resizing users. Therefore, PFS is more suitable for

P2P streaming systems with dynamic fractions of simultaneous resizing users, and

PPS is more suitable for other dynamic P2P streaming systems.
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Chapter 4

A General Framework for

Analyzing P2P Streaming Systems

with Heterogeneous User Demands

on Video Quality

In this chapter, we make a further study about how to provide all users with unin-

terrupted video with their desired qualities in case that their demands dynamically

change. The adaptive streaming rate technique is a promising method. However,

in providing adaptive streaming rate services, P2P live streaming design faces the

following challenges: adequate resource availability and neighborhood resource avail-

ability.

To shed more light on this problem, we propose a theoretic model to tackle the de-

mand heterogeneity problem. With this model, we systematically study the method-

ology of sustaining users’ heterogeneous demands with low bandwidth consumption.

In this chapter, we formulate the system with a linear programming model based on
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demand-supply relation considering the content and bandwidth limitations at peers.

With the optimization methods, we figure out the optimal bandwidth allocation with

the minimum bandwidth consumption. We investigate the system structure and

propose a tiered overlay and rice-rated mechanism to quickly accommodate peers’

demand changes.

4.1 Problem Formulation

Demand heterogeneity on video quality has its own characteristics which complicate

distributing the uninterrupted video to users with expected qualities in the follow-

ing two aspects: (1) Adequate resource availability. Demand changes of peers may

break the original balance between the resource demand and the resource supply.

The system should always provide enough resource supplies, otherwise it suffers bad

performance. (2) Neighborhood resource availability. If peers’ changing demands can

be served by other peers close to them, they can see the video with their desired

qualities immediately after the changes. Unfortunately, there are no studies in the

literature offering a comprehensive and analytical work.

Then, what constitutes a proper solution for P2P live streaming systems in case

of demand heterogeneity? We are interested in three important metrics which jointly

define the performance: (1) bandwidth cost: the total amount of bandwidth consumed

by the system; (2) delay: the interval between the demand changing time and the

time when a peer can completely receive all required content; (3) capability: the

system should support peers with heterogeneous demands on video quality as many

as possible. But these three metrics usually conflict with one another, and it is

challenging to solve all of them concurrently.

In most of the existing P2P streaming systems [58, 60, 70], peers all receive the
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Figure 4.1: An improper upload bandwidth allocation at peers makes the system
suffer heavy server load and poor performance. Superscripts of the server and peers
indicate their upload bandwidth, and the streaming rate of each link is also marked
next to the link.

identical content at the same streaming rate. Here, we propose adaptive stream-

ing to solve users’ demand heterogeneity on video quality. There are two common

coding methods to provide adaptive streaming, namely Multiple Description Coding

(MDC) [17] and Layered Coding [16]. We use layered coding since it has noticeably

higher coding efficiency than MDC, but our work can easily be extended to MDC.

With layered coding, peers may receive different layers corresponding to their differ-

ent demands. The peers with low demands on video qualities only need to receive a

subset of the layers, so the bandwidth consumption is reduced.

As peers have different layers according to their demands with adaptive streaming

rates, their upload bandwidth allocation among these layers should be well planned.

Consider the simple scenario in Figure 4.1, where the video is encoded into one base

layer at a rate of 1 segment/s and one enhancement layer also at a rate of 1 segment/s.

The server utilizes all its bandwidth to steam the video to peers A and B, and the

connection from A to B becomes useless as B already has both layers. Peer C is
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Figure 4.2: A proper upload bandwidth allocation reduces servers load and improves
systems satisfaction under the same settings. Peer A streams the received base layer
to peers B and C, so the bandwidth of server S and peer B can be dedicated to the
enhancement layer.

unsatisfied as none of its neighbors forwards the enhancement layer to it - peer B’s

upload bandwidth is used to stream the base layer and peer A does not have the

enhancement layer.

The above problem can be solved by reallocating the participating peers’ upload

bandwidth. As shown in Figure 4.2, peer A streams its received base layer to peers

B and C, so that 33% of the server S’s bandwidth is saved, and peer C’s demand

on high-quality video is also satisfied. For this problem, the main challenge lies in

determining how to optimally allocate the upload bandwidth to layers at peers in

order to minimize the server load as well as to improve the system satisfaction.

The challenge is not easy to overcome in practice. First, sometimes bandwidth

allocation can achieve the optimal bandwidth efficiency, but it cannot solve the whole

problem. In Figure 4.3, peer B’s upload bandwidth decreases to 0.5, for example,

if other applications also run at peer B and consume part of its bandwidth. No



www.manaraa.com

65

2.5

0.5

B

C

 S

1

1
0.5

0.5

Extra content traffic

1

1

3

0.5

2

A

Figure 4.3: Bandwidth allocation cannot always solve the problem, and extra for-
warding is required. Peer A downloads the enhancement layer not required by itself,
then streams it to peer C, as C cannot get the enhancement layer from B at a sufficient
streaming rate.

matter how complicated a bandwidth allocation is designed, it is impossible for peer

C to get both the base layer and the enhancement layer. As shown in Figure 4.3,

peer A additionally downloads the enhancement layer and forwards it to peers B

and C. Peer A serves as a relay to stream the enhancement layer to peer C, so all

peers in the system can receive the video with their expected qualities. Second, users

dynamically change their demands which subsequently change the layers owned by

peers. A bandwidth allocation which works well now may not work in the future.

Usually, the more choices on video qualities that the system provides, the more

bandwidth can be saved. This is because the demands can be differentiated more

precisely. But in practical implementation, the complexity also increases, and coding

efficiency decreases.
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4.1.1 Model

To study this problem more precisely, we define the following symbols and definitions.

• Let N be the set of all peers, and n be the number of these peers.

• As there exist diverse demands on video quality, we set up thresholds to dif-

ferentiate them into corresponding viewing groups. Each type of video quality

demand has its corresponding view group. This may lose some precision on

demand representation, but is still capable to grab the essence of demand het-

erogeneity. Let J be the number of groups in the system, Mj(t) represents the

set of peers of view group j, and mj(t) represents the number of peers in view

group j. There are total n peers. Then the state of the system at any given time

can be defined by a J-dimensional vector M(t) = (M1(t), M2(t), ..., MJ(t)).

Since the whole system is dynamic and we focus on the balance between the

resource demand and the supply, we remove t from the notation to simplify the

description. Please note that the vector changes over time. Without loss of

the generality, we consider that M1 represents the view group with the lowest

demands defined in the system, while MJ represents the view group with the

highest demands. Obviously, the groups are dynamic as peers can change their

demands based on their own preferences.

• Let R be the full streaming rate of the channel watched by these n peers. With

layered coding, the stream is divided into J layers. The number of layers does

not necessarily equal to the number of demands provided by the system, but

here we make them be equal to simplify our description. Peers in view group

j request layers from layer 1 to layer j. rj represents the streaming rate of

layer j, and R =
∑J

j=1 rj, so the required streaming rate of view group j is

Rj =
∑j

i=1 ri. For example, in 2-layer layered coding with streaming rates of
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110 kbps and 220 kbps respectively, peers in view group 1 receive the base layer

of the video at 110 kbps, and peers in view group 2 are watching the same video

with high definition at rate 330 kbps.

• Let V be the server’s upload bandwidth. Let Vj denote the upload bandwidth

of the server allocated for layer j. Note that, Vj is a variable with rj ≤ Vj and
∑J

j=1 Vj = V .

• Let ui be the upload bandwidth of peer i, while u represents peers’ average

bandwidth. To simplify the description, we assume that there are two types of

bandwidth: uh and ul, with uh > R > ul. The percentage of high bandwidth

peers is α.

Below we provide some definitions to more precisely measure system-wide satis-

faction.

Definition 1 A peer is satisfied if it receives all layers which it requires and the

received rates of these layers are equal to their streaming rates.

This definition is straightforward, but we want to emphasize that receiving any

further layers after gathering all required layers, does not improve user satisfaction

as they already can view the video with their desired qualities.

Definition 2 Layer J is fully served by the system if: Di ≥ Bj − Oj, where Bj,

Dj are the total amount of the supply and the demand for layer j, respectively. Oj

is the control overhead for layer j.

When the system can provide the supply of layer j more than the demand, we

consider layer j as fully served. Thus, the probability of layer j’s satisfaction is defined

as:
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Pj = P (Dj ≥ Bj −Oj)

Further, if layers from 1 to J are all fully supported, we say that the system

sustains all peers with their heterogeneous demands. The system-wide satisfaction

probability across all layers is defined as:

PS =
J∏

j=1

P (Pj|Pj−1), P0 = 1 (4.1)

Please note that the system is satisfied only if all the J layers have enough supplies

compared to their demands. This formula is used to measure the impact of bandwidth

and demand distribution on system satisfaction.

Definition 3 If a peer can get all required content in a short bounded period T

after it changes its demand, we say that short delay is achieved.

Usually, a peer degrades its demand by stopping requests for some layers, while it

upgrades the demand by starting requests for more layers. In the first case, its changed

demand can be immediately satisfied, while in the second case, some buffering time

may be required before playing the stream of the upgraded demand.

4.2 Resource supply and demand

Based on predefined demand differentiating methods, peers in the system are divided

into J groups: from the peers in M1 with the lowest stream demand to high-definition

peers in MJ with
∑J

j=1 mj = n. Peers in M1 receive the first layer-the base layer,

while peers in M2 receive 2 layers-the base layer and the first enhancement layer, ...,



www.manaraa.com

69

peers in MJ receive the base layer and J−1 enhancement layers. Peer i in view group

j allocates ui to layers from 1 to j, and its contribution to layers higher than j is 0

because it does not have these layers.

The basic requirement of the system is to ensure that for each layer, the bandwidth

supply exceeds or equals the bandwidth demand. To simplify the description, if the

supply of layer j > 1 cannot support its demand, we call it a lean layer. If there is no

lean layer in the system, the whole system is satisfied as it has enough supplies for

all layers. The population of peers is distributed as m1,m2, ..., mJ . So we can easily

get the total bandwidth demand for layer j, j ∈ [1, J ] as:

Dj =
J∑

i=j

mi ∗ rj (4.2)

In the following subsection, we investigate what an optimal bandwidth allocation

is.

4.2.1 Optimal bandwidth allocation

Let Uj represent the total amount of bandwidth of peers in view group j, Uj =
∑

i∈Mj
ui. Note that Uj is shared by layers from 1 to j. All peers in view group i ≥ j

have layer j, so the layer j’s bandwidth is in the range of Bj ∈ (0,
∑J

i=j Ui + V j].

As the total amount of bandwidth for these layers cannot exceed the total upload

capacity, we have
∑J

i=j Bi ≤
∑J

i=j(Ui + Vi) for j ∈ [1, J ].

As shown in the aforementioned example, there may exist Dj > Bj for some

j ∈ [1, J ]. We use ∆Bj to denote the bandwidth shortage for layer j. Namely,

∆Bj = max{0, Dj−Bj}. To simplify the description, we ignore the control overhead

Oj as it is relatively small and usually is a fixed fraction of Dj. We have Bj+∆Bj = Dj
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for j ∈ [1, J ].

We want to minimize the amount of these ∆Bjs by efficiently utilizing existing

resources, so that the gap between the demand and the supply is small. We formulate

this allocation problem as the following optimization problem.

minimize

J∑
j=1

∆Bj, s.t.

Bj + ∆Bj ≥ Dj

and
J∑

i=j

Bi ≤
J∑

i=j

(Ui + Vi), for j ∈ [1, J ]

∆B1 ≥ 0, ∆B2 ≥ 0, ..., ∆BJ ≥ 0

B1 ≥ 0, B2 ≥ 0, ..., BJ ≥ 0 (4.3)

The first constraint in Eq. (4.3) shows that the system needs to make the supply

of layers from 1 to J greater than or equal to the demand. The second constraint

defines the scopes of variables Bjs.

This is a linear program as well as a convex program. The optimal ∆Bjs can be

solved using Karush-Kuhn-Tucker Theorem [56]:

∆B∗
j = max

{
J∑

i=j

(m∗
i

i∑

k=j

rk − Ui −∆B∗
i+1)− Vj, 0

}
,

for ∆B∗
J+1 = 0 (4.4)

The expression (4.4) of ∆B∗
j shows that peers should allocate bandwidth to their

high layers with high priorities. In layered coding, peers which have layer j also have

layers lower than j. Lower layers are more important than higher layers in layered
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coding. When there exists a lean layer i < j with ∆Bi > 0, we convert layer i

to a non-lean layer through making peers release ∆Bi which is allocated to layers

higher than i and assigning the released bandwidth to layer i. Bandwidth for layer j

decreases by ∆Bi, but the total amount of
∑J

i=1 ∆Bi is still the same. So in practice,

we make peers serve low layers first, but always try to allocate more bandwidth to high

layers.

4.2.2 Is bandwidth allocation alon enough?

However, the optimal bandwidth allocation may not always be able to sustain all peers

with their desired demands as shown in Figure 4.3. In this subsection, we explore

when and why the optimal bandwidth allocation fails to sustain all peers with their

demands.

The essence of bandwidth deficiency of layer j is the unbalanced relation between

the demand of layer j and its supply. Assume that α percent of peers have high

bandwidth uh and the remaining peers have low bandwidth ul . Layer j becomes a lean

layer if there are not enough high bandwidth peers contributing their bandwidth to

layer j. Let xj denote the number of peers with uh in view group j, thus the potential

available bandwidth of view group j can be expressed as Uj = xj ∗uh +(mj−xj)∗ul.

Please note that α only determines the total number of high bandwidth peers in the

whole system, but the number of high bandwidth peers in each view group is random.

Now we consider under what conditions layer j can be supported with the optimal

bandwidth allocation, namely ∆Bj = 0. Following Formula (4.4), we have

J∑
i=j

Ui ≥
J∑

i=j

(mi ∗
i∑

k=j

rk)− Vj
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Replace Ui with Uj = xj ∗ uh + (mj − xj) ∗ ul, and we have

J∑
i=j

xi ≤
∑J

i=j(mi ∗
∑i

k=j rk −mi ∗ ul)− Vj

uh − ul

Let βj =
∑J

i=j(mi∗
∑i

k=j rk−mi∗ul)−Vj

uh−ul
. Namely, only if there are at least βj can layer

j have the enough supply. Thus, the probability of layer j’s satisfaction is:

Pj = P (
J∑

i=j

xi ≥ βj) (4.5)

Using Eq. (4.1), we can obtain the probability of system satisfaction.

Whether the system is able to support all peers’ demands is also affected by the

demand distribution. For a given system with a fixed demand distribution, the value

of Pj is affected by the percentage of high-bandwidth peers in the system. On the

other hand, when the percentage of high-bandwidth peers in the system is stable, the

demand distribution determines the value of Pj.

Let us consider a system which consists of 1,000 peers with two types of bandwidth,

and there are high, medium and low demands. The video is encoded into three layers

with identical streaming rate at R
3
, so the peers with the three types of demands need

to receive 1, 2 and 3 layers, respectively. We set uh = 2R and ul = 0.2R which are

reasonable according to practical settings. For example, typically the streaming rate

of a video provided by existing P2P streaming systems is about 300-500 kbps, and

a residential user may only have 100 kbps upload bandwidth while a campus user

may have high upload bandwidth like 1 Mbps. α is used to control the percent of

high-bandwidth peers. The number of peers’ neighbors is 30-50, as typically used in
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Figure 4.4: The higher percentage of high-bandwidth peers is, the easier for the
system gets satisfied.

prevailing P2P streaming systems [70, 58]. The peers’ demand distribution follows

the Zipf law [1]. Namely,
mj

mj+1
= δ, where δ is the Zipf parameter. We plot the

results of satisfaction probabilities of the system under different bandwidth settings

and demand distributions.

Firstly, we check the impact of bandwidth distribution in Figure 4.4. The demand

distribution follows Zipf law with δ = 1. The results show that the more high band-

width peers are in the system, the higher probability of system satisfaction is. When

the system has many high-bandwidth peers (like 50%), it can always get satisfied.

But there are not so many high-bandwidth peers in real world to make all layers

always have enough supplies.

Next, we check the impact of demand distribution on the probability of system

satisfaction. We choose a fixed α = 0.45 to ensure that the system has sufficient

bandwidth even if all peers have high video quality demands. Figure 4.5 shows that

a system with heterogeneous demands gets a high probability of satisfaction only

for δ ≤ 1. When δ becomes larger, the demand is more unevenly distributed. For
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Figure 4.5: Uneven demand distribution decreases the probability of system satisfac-
tion, even with sufficient bandwidth.

example, high demand peers become rare when δ ≥ 1, and the small population of

peers owning layers 2 and 3 makes the system hard to find sufficient bandwidth for

them. While δ < 1, there are many peers having these layers, so the supplies of

them are no longer a problem. The results show that the system needs to maintain

a considerable number of peers having high layers.

Sometimes extra efforts are required. Without increasing server load, peers help

one another by forwarding extra data not required by themselves. The number of

these peers should be as few as possible to limit the bandwidth consumption, and we

discuss how to select them in the following subsection.

4.2.3 Peer selection policy

As each selected peer also downloads a copy of a lean layer, we need to select peers

as few as possible to minimize the bandwidth consumption. Given a candidate peer i

for a lean layer j in view group k(k < j), bandwidth allocated for layer j is limited by
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its spare bandwidth u′i. Only peers with u′i > rj will be chosen to forward the extra

layer j, and amplify bandwidth for layer j by u′i−rj [80]. Otherwise, the gap between

the demand and the supply of layer j increases rather than decreases as these peers

consume more bandwidth than their contribution. Let Hj represent the set of chosen

peers for layer j. Our goal is to:

min

J∑
j=1

∑
i∈Hj

rj,

subject to

∑
i∈Hj

u′i ≥ ∆Bj, for j ∈ [1, J ] (4.6)

Formula (4.6) shows that the optimal method is to select peers with high spare

bandwidth. However, this works only if peers do not reallocate their bandwidth. As

peers follow the optimal method to adjust their bandwidth allocation, a peer with the

maximum spare bandwidth now may not have the maximum bandwidth contribution

in the future.

Theorem 1 From peers in view groupk(k < j), selecting those with the highest

bandwidth in group k can minimize the extra bandwidth consumption.

Proof We assume that there exist two candidates peers a and b in view group k

with ua < ub . We denote the total spare bandwidth of peers in group k with U ′
k .

Under optimal bandwidth allocation, peers allocate their bandwidth to higher layers

as much as possible after serving the lower layers. Their bandwidth contribution is

constrained by: the selected peer’s bandwidth and the total spare bandwidth of group

k. The first constraint is easy to understand. The second constraint is because peers

need to firstly serve layers lower than j in the optimal bandwidth allocation. Thus, for

the two candidates, the potential increased bandwidth for layer j is min(ua, U
′
k) and
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min(ub, U
′
k), respectively, and min(ua, U

′
k) ≤ min(ub, U

′
k). So to get the maximized

bandwidth contribution, the highest bandwidth peers should be selected first.

4.3 Framework for accommodating video quality

demand heterogeneity

In this section, we propose a framework to implement the ideas derived in Section 4.2

and to achieve short delay when peers change their demands. We present the tiered

structure to organize peers into cooperative groups. The distributed algorithms to

implement the efficient bandwidth allocation and peer selection within a cooperative

group are also discussed.

4.3.1 Tiered P2P streaming

It is hard to find an efficient solution to stream the video to peers with their desired

demands. Consider the case in Figure 4.6: the video is encoded into two layers, and

peers have different numbers of layers based on their own interest. As only a subset of

all n peers needs layer 2, streaming the content of layer 2 to these peers in an efficient

way requires finding a Steiner tree in a weighted graph, which is NP-Complete [27].

However, we can organize peers into several cooperative groups, as shown in Figure

4.6. The server maintains the bandwidth information of these groups. When a new

peer joins, the server determines which cooperative group the peer is assigned to based

on its bandwidth. Thus, all cooperative groups have similar bandwidth capacities.

After reorganizing them into small groups, each cooperative group selects one peer to

join the higher tier. In Figure 4.6, peers are organized into two tiers: tier-1 and tier-2,

and one peer in each cooperative group is selected to join the higher tier - tier 1. In

a cooperative group, the tier-1 peer requests all layers of the video, so it is possible
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Figure 4.6: Tiered overlay of a P2P streaming system
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for the other peers to obtain all layers in the local scope.

All the tier-1 peers as well as the server constitute a mesh, which is used in most of

commercial P2P live streaming systems. This mesh distributes all layers of the video.

Even if sometime these tier-1 peers do not have high video quality demands, they still

get rewards as tier-1 peers. Compared to other peers, they are closer to the server,

and have shorter playback delay. Please note that the connections between peers from

different cooperative groups also exist, but the peers always serve the neighbors in

the same cooperative group with higher priorities. Usually only the peers with high

bandwidth and high demands are more likely chosen to be tier-1 peers.

Cooperative groups are orthogonal to view groups. Peers are organized into coop-

erative groups based on their bandwidth, while they are divided into different view

groups according to their demands on video qualities. As peer demands are orthogo-

nal to their bandwidth, these two groups are orthogonal.

Let τ denote the size of a cooperative group, we set up two parameters: τmin and

τmax representing the minimum and maximum size of a cooperative group, respec-

tively. Usually peers maintain dozens of connections in P2P live streaming systems

[94]. For example, the default number of connections is 18 in UUSee [70]. Accordingly,

we set the cooperative group size to be between 30-50, and peers inside a cooperative

group maintain a neighbor list of size 15. Under these settings, peers are directly

connected with 30-50% peers in the cooperative group, so they can easily find layers

that they need within their own groups. Even in the worst case that peers need to

find new neighbors after changing their demands, they can quickly complete searching

all group members. For a tier-1 peer, it also has connections with other tier-1 peers,

so its neighbor list is about twice that of other peers’ in the cooperative group.

We claim that there exist enough stable peers which can be chosen as tier-1 peers.

The cooperative group size is between 30-50 and there is one tier-1 peer in each
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cooperative group. Namely, there is one tier-1 peer in every 30-50 peers, and thus

the percentage of tier-1 peers roughly is 2-3%. A recent systematic study of a real

large-scale system shows that the ratio of stable peers is 73.8-85.0% per snapshot or

5.5-15.4% per trace [74], which means that there are sufficient stable candidates as

tier-1 peers. Further, we can assign backup peers for these tier-1 peers in the same

cooperative groups, so they can quickly take the role of the tier-1 peers which are

leaving.

There are several advantages of the tiered mesh structure: (1) It is easy to imple-

ment. The existing sophisticated P2P technologies can be directly used to distribute

video to tier-1 peers, and the derived principles are easy to be implemented in a co-

operative group, due to its relatively small scale and highly-connected feature. (2)

Peers have accesses to all layers in a cooperative group, which makes peers be able

to immediately receive all required content after the demand changes. (3) Impact of

churn, including both peer churn and demand churn, is restricted in a small scope.

Let us consider delays after the demand changes. As discussed before, only peers

which change their demands from low to high suffer delays until they get the newly

required layers. Most of the time, the tiered structure makes the peers easily find their

required layers, because the cooperative group maintains enough bandwidth supplies

compared to the demands for all layers.

4.3.2 Distributed algorithms

In this subsection, we introduce the price-rated mechanism to implement the following

principles derived from Section 4.2:

• A peer allocates its bandwidth to a high layer as much as possible after fully

serving all layers lower than that layer.
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• Peers which can allocate more bandwidth to lean layers are chosen to forward

extra lean layers.

Layers in a cooperative group have different prices reflecting whether the supplies

are sufficient compared to the demands. For a single layer, the unit price is defined

by:

pj =





αj, if
dj

bj
> 1

1, if
dj

bj
= 1

0, if
dj

bj
< 1

(4.7)

where dj and bj represent the demand and supply of layer j in a cooperative

group, respectively with α1 > α2 > ... > αJ > 1. dj is determined by current peers’

demands, while bj is determined by the bandwidth allocation at these peers.

According to the price information of all layers, peers are able to determine when

and which lean layers they should contribute their bandwidth to. Peers pay for

downloading layers from their upstream peers, and charge their downstream peers

for forwarding the layers to them. For peer i in view group j (if it forwards an extra

layer j + 1, it will be considered as in view group j + 1) , it allocates ai,k bandwidth

of its total ui to layer k, and it aims to get the maximized payment.

maximize Φ(i) =

j∑

k=1

ai,kpk

subject to
j∑

k=1

ai,k ≤ ui

ai,k = 0, for k > j (4.8)
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The first constraint in Formula (4.8) means peer i’s contribution cannot exceed

its capacity, and the second constraint means that it can only forward the layers that

it has.

For all peers in a cooperative group, we have

τ∑
i=1

ai,j ≤ dj, for j ∈ [1, J ] (4.9)

Theorem 2 With the distributed algorithms, peers allocate their bandwidth to the

high layers as much as possible.

Proof We prove this by contradiction. If there exists a low layer j with bj < dj,

while layer k > j has bk > 0. For a peer i which allocates ak bandwidth to layer k, it

gets profit Φ(i). If it decreases ak by ∆ak where ∆ak < bj < dj and reallocates this

∆ak to layer j, the new profit Φ(i)′ = Φ(i) + ∆ak ∗ (pj − pk) > Φ(i) as pj = αj >

αk ≥ pk. Φ(i) is not maximized.

If the high layer j is allocated bj ≥ 0 bandwidth which is less than the possible

maximum value, there exists another bandwidth allocation with which layer j receives

b′j > bj. There are two possibilities for peer i to provide the ∆bj: allocate from its

spare bandwidth or decrease its bandwidth allocated for layers lower than j and

reallocate that to layer j. For both of the two cases, we have Φ(i)′ > Φ(i).

4.4 Performance evaluation

In this section, we evaluate the effectiveness of the proposed framework in P2P live

streaming systems in case of heterogenous video quality demands. We choose PPS
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Peers’ distribution # 1 Mbps(%) 384Kbps (%) 128Kbps (%)

1 10 35 55

2 10 45 45

3 15 39 46

4 18 40 42

5 20 45 35

6 23 46 31

Table 4.1: Table of bandwidth distributions

[89] as a reference and implement PPS integrating our framework called tiered PPS.

In PPS peers request different number of layers according to their demands on video

qualities, and some of them work as helpers to forward layers which are not required by

themselves. Peers periodically collect the information about the supplies of layers in

their neighborhood, and then determine to work as helpers or not. In PPS, its overlay

structure and peer cooperation are not well-designed, and there is no optimization on

bandwidth allocation of peers. The details of PPS can be seen in [89].

In the default settings, there are 1,000 peers in the system with an either high or

low demand on video qualities. The demand distribution from low to high follows

Zipf law with default Zipf parameter δ = 1. The video is encoded into J layers, with

the default value of two corresponding to the two types of demands. The two layers

have streaming rates of r1 = 200 Kbps and r2 = 100 Kbps and the total rate of the

video is R = 300 Kbps. There are three types of peers as shown in Table 4.1, and we

choose no. 6 as the default setting.

We check if current demands can be sustained by calculating the playback conti-

nuity which is the ratio of packets arriving before their playback deadline. Figure 4.7

shows that the tiered PPS provides high and stable stream quality. The framework

makes the system relatively stable and peers inside a group can cooperate much more



www.manaraa.com

83

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 1.01

 1800 1400 1000 600 200

P
la

yb
ac

k 
C

on
tin

ui
ty

Simulation Time (Seconds)

PPS
Tiered PPS

Figure 4.7: The framework improves the overall performance via stable structure and
cooperation.

easily. Further, the optimal bandwidth allocation increases the bandwidth efficiency,

so the peer demand is supported with higher probabilities. Then, we shift our interest

to the bounded delays.

Figure 4.8 shows that shorter delays are achieved with the framework. Because

the framework ensures that peers can locally find the supplies of layers that they

need. Thus the changes can be immediately accommodated.

Figure 4.9 shows the impact of the framework on bandwidth efficiency. With

the framework, bandwidth consumption considerably decreases, because the optimal

bandwidth allocation and peer selection minimize the total amount of bandwidth to

support peers’ heterogeneous demands. Compared to the values before integrating

the framework, the bandwidth consumption fluctuates greatly. This is because peers

cooperate in a cooperative group much smaller than the whole system, so deficiency

and excess of bandwidth of layers can be quickly detected, and the system can be

efficiently tuned up.

Further, the tiered structure also improves the playback delay. As peers are or-
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Figure 4.8: The framework considerably improves the local resource availability.
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Figure 4.9: The framework enables the system achieve higher bandwidth efficiency.
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Figure 4.10: Tiered PPS has shorter playback delays.

ganized with tiered structure, the content distribution is more efficient. Figure 4.10

shows a dramatic improvement on average playback delay after using the framework.

We next evaluate the framework under various circumstances. First, we set up

several close to real life configurations of peers’ bandwidth distribution as shown in

Table 4.1, while we maintain the demand distribution with Zipf parameter δ = 1.

Figure 4.11 shows that our framework always beats PPS as it improves the band-

width efficiency as well as effectiveness of cooperation among peers. Figure 4.12

shows packet delivery ratio 2 seconds after peers increase their demands. Our frame-

work provides peers with short delay in all the settings. Figure 4.13 depicts that

our framework helps PPS reduce bandwidth consumption via improving bandwidth

efficiency. All these improvements are more evident, especially when the system has

a low percentage of high upload bandwidth peers.

Next we shift our interest to testing if our framework is robust under different

demand distributions. We change the demand distribution with Zipf parameter δ

from 0 to 2, while we maintain the 6th bandwidth distribution shown in Table 4.1.
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Figure 4.11: The overall performance is always improved by the framework.
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Figure 4.12: The framework enables peers get video more quickly.
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Figure 4.13: The framework helps PPS reduce bandwidth consumption.
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Figure 4.14: The framework helps PPS achieve high and stable performance under
various demand distributions.
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Figure 4.15: The framework enables peers to complete the demand changes within 2
s under various demand distributions.

Figure 4.14 shows that our framework can help PPS achieve high performance even

when the demands is unevenly distributed, while PPS before applying our framework

suffers low performance when there are few high demand peers. Our framework

enables PPS to accommodate peers’ heterogeneous demands under various demand

distributions. With the tired structure, it is easier for peers inside a cooperative group

cooperate with one another. The existence of tire-1 peers makes the system always

have the enhancement layer suppliers in all groups.

The values of packet delivery ratio 2 seconds after peers switch to high demands

shown in Figure 4.15 demonstrate that our framework helps peers quickly find their

desired content and achieve short delays. The improvement is more obvious when the

demand distribution is uneven. When most of peers only request the base layer, it is

hard for peers to get the enhancement layer after switching to high demands in PPS.

With the framework, peers can easily find the suppliers for the enhancement layer

within their groups.

Figure 4.16 shows that our framework can reduce the bandwidth cost efficiently.
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Figure 4.16: The framework considerably reduces the bandwidth consumption under
different demand distributions.

When there are lots of peers having the enhancement layer in the system, the im-

provement on bandwidth consumption decreases little. Because when most of peers

request both the base layer and the enhancement layer, the impact of optimal band-

width allocation becomes less.

4.5 Conclusion and Discussion

In this chapter, we extend our work in Chapter 3 through formulating the problem

as a demand-supply problem, and studying the bandwidth allocation optimization.

We propose a framework to effectively utilize system bandwidth while still achieving

good performance. We formulate the problem with a linear programming model

and figure out how peers optimally allocate their bandwidth. Peers are grouped

with the tired structure, and cooperate with one another to achieve high bandwidth

efficiency, low delay and high video quality. We extensively evaluate the performance

of our framework by incorporating it into PPS, an earlier scheme dealing with video
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quality demand heterogeneity. Our simulation results demonstrate that optimized

algorithms and tiered structure noticeably boost PPS’s performance. Apart from

PPS, our framework can also be incorporated into other schemes.
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Chapter 5

Designing Efficient Time-shifted

P2P Streaming Systems with

Heterogeneous User Demands on

Playback Delay

5.1 Motivation

Time-shifted streaming is an application which allows peers to view live video content

in a more convenient way. Peers can view the video segments which have been broad-

cast before they join the system. The service provider predetermines a time-shifted

window to define how much past video a peer can view. For example, when a peer

joins the system, he/she can choose to view any video segments within the last 3

hours. Because of this flexibility, time-shifted streaming is very attractive. Although

it has been implemented in typical television systems for a while [86], there is not

much literature discussing P2P-based time-shifted streaming.
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Figure 5.1: Live vs Time-shifted vs VOD streaming.

Time-shifted streaming is similar to live streaming and VOD streaming, but it

also has its own specific features. Similar to live streaming, the server in time-shifted

streaming continuously broadcasts a live video. But peers in time-shifted streaming

can view different video segments of the video. Similar to VOD streaming, time-

shifted streaming allows peers to pause and resume, as well as fast-forward and rewind

the video. But the video in time-shifted streaming has not yet been recorded and

added to the VOD library. Figure 5.1 illustrates their relationship: peers in live

streaming view the video when it is broadcast live, and all peers are viewing the same

segments. Thus it has the highest probability of sharing segments among peers, and

has the shortest playback delay. In VOD streaming, the video is recorded and stored

in the VOD library. Peers can view it anytime after that, even several days after it

is first broadcast. Thus it has the lowest content sharing probability and the longest

playback delay. Time-shifted streaming is an application covering the gap between

them. Because time-shifted streaming is different from both live streaming and VOD

streaming, existing live streaming and VOD streaming solutions are not suitable for

time-shifted streaming.

There are two options to implement P2P-based time-shifted streaming. One is

called digital video recorder (DVR) style, in which peers start the application at the
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beginning of the live broadcasting, and they use the recording function to save a

local copy of the video, so that they can view it later. In the other option, peers

can start the application at any time during or even after the live broadcasting to

view the video. It does not require recording before their viewing, and we call it

non-prerecording (NPR) style. The DVR style can be implemented using existing

live streaming solutions with minor changes. But the NPR style is challenging. As

peers are viewing different video portions, they might not fetch the video segments

in time and glitches may happen. Even if peers can request these segments from the

streaming server, the server capacity is limited and the system scalability is affected.

In this chapter, we study the design of an NPR style P2P-based time-shifted streaming

system with low server bandwidth consumption.

5.2 Time-shifted Streaming Solutions and Chal-

lenges

In this section, we firstly study the possible solutions, and investigate time-shifted

streaming in most popular of P2P streaming systems. Then we describe the mea-

surement results and discuss the challenges in implementation.

5.2.1 How to Implement Time-shifted Streaming

In P2P based time-shifted streaming, peers are able to view a video asynchronously

to the broadcast time. It provides lots of attractive features: 1) pausing the live video

and continuing later; 2) watching the past segments of the video and jumping over

uninteresting segments until catching up with the live stream. With these features,

peers can view the live video with flexibilities like viewing a VOD video. Namely,

peers in a time-shifted streaming system are able to access at a time different from
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when it is lively broadcast.

In a TV system, time shifting is implemented by recording videos to a storage

medium to be viewed at a time more convenient to the consumers [51]. The component

used for recording purpose is called digital video recorder (DVR), which allows peers

to set up when to start and stop recording. Similarly, the DVR-style option can

be used for time-shifted P2P streaming. In the DVR-style option, peers join the

system when the live video starts, and record the broadcast content into their local

nonvolatile memory. The recording is synchronized with the live broadcasting. When

a peer pauses the video, the playing stops but the recording continues. Thus all the

broadcast segments are available in the local memory. Peers are able to pause and

resume at anytime, and jump to any broadcast segments at anytime. In this method,

peers always download the lively broadcast segments no matter whether they pause

the stream or not, and which segments they are viewing. Peers’ downloading behavior

is similar to that in live streaming, so existing live streaming solutions can be used

with minor changes.

Different from the DVR-style option, there is another option which does not re-

quire the recording before peers join the system, and we call it non prerecording

(NPR) option. The NPR-style option is more flexible but also more challenging.

In NPR-style P2P streaming, the service provider determines a time-shifted window

which indicates how much past video can be viewed. When a peer joins the system,

it can access any segments within the window. Please note that the window moves

forward along with the live broadcasting. For example, when a peer joins in a system

with the time-shifted window of 1 hour at 8 p.m., it is able to view any segments

broadcast between 7 p.m. and 8 p.m.. When it joins the system at 9 p.m., it can

access segments broadcast between 8 p.m. and 9 p.m.. Peers can view different

segments within the time-shifted window. Compared to the DVR-style option, this
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Time-Shifted Streaming Style
PPStream No N/A

PPTV Yes DVR
SopCast No N/A

TVUPlayer Yes DVR
UUSee Yes NPR

Table 5.1: Time-shifted deployment in P2P streaming

option is more flexible. But it requires more cooperations among peers, since peers

are viewing different segments of the video and it is hard for them to share video

segments with one another. Otherwise, it brings too much load to the server.

5.2.2 Time-shifted Streaming in Commercial Systems

We investigate time-shifted streaming in popular commercial P2P streaming systems,

and the results are summarized in Table 5.1. SopCast [64] and PPStream [60] do not

support time-shifted streaming. PPTV[59] and TVUPlayer [69] already provide DVR-

style time-shifted streaming service with which a peer can pause a video after it joins

the system. The live broadcast segments are downloaded to peers’ local memory, and

therefore peers are able to view any of them at any time. UUSee [70] provides NPR-

style time-shifted streaming. To the best of our knowledge, only UUSee allows peers

to access the video segments which have been broadcast about 40 minutes before their

joining times.

To understand how commercial P2P time-shifted streaming systems work, we mea-

sure three systems. 1) PPTV selected as a representative of DVR-style time-shifted

streaming, 2) PPStream selected as a representative of no time-shifted streaming, and

3) UUSee selected a representative of NPR-style time-shifted streaming. In PPTV,

we pause and resume the video periodically. We observe that the download rate is

almost constant, as peers download the live broadcast segments at the streaming rate
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of the video like a digital video recorder. In PPStream, the peer’s download rate is

not affected by pausing and resuming the video either. PPStream does not support

DVR-style time-shifted service. It automatically resume after pausing for a short pe-

riod when its buffer is fulfilled. A minor change at the client end can make PPStream

support the same feature as PPLive: peers periodically move the content in the buffer

to their local disks, so the memory space can be used for new video segments. In

UUSee there are two independent channels for the same live broadcasting. For exam-

ple, there is a channel for CCTV-6 which only provides live streaming service, and

there is another channel for it providing time-shifted service. Providing time-shifted
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service in a new channel does not affect the corresponding live channel which can still

serve all peers in the same way as before introducing the time-shifted one. However,

this method has its disadvantages, and we will discuss them later.

We not only measure the time-shifted channel but also consider the live channel as

a reference in UUSee. In Figure 5.2, we can see that peers in time-shifted streaming

have higher download rates than peers in live streaming till they join for more than

two and half hours. Theoretically, the streaming rates of the same video should be the

same or at least close in time-shifted streaming and in live streaming. Because peers in

time-shifted streaming prefetch segments which may not be required by themselves

right now, the download rate in a time-shifted streaming is higher than the video

streaming rate. Please note that peers can “prefetch” both the future segments and

the past segments. This can be proved by the fact that peers are able to jump forward

or backward to another segment smoothly after they join the system long enough.

Peers stop prefetching when there are sufficient segment copies in the system.

This is why finally the download rate in time-shifted streaming gets close to the rate

in live streaming. For the time-shifted channel, we have two sets of data, one of

which is the download rate of peers which view the video synchronously with the

live broadcasting, while the other is the download rate of peers which view the video

with the maximum time-shifted delay. There is a small difference between peers with

delay and without delay on when the download rate drops close to the download rate

in live streaming. What peers are viewing may affect their downloading behavior, so

their download rates are slightly different.

We also notice that UUSee provides time-shifted streaming service and live stream-

ing service with two separate channels. We check the distinct source IPs of packets

received by two peers watching CCTV-6 at the same time but one in the live stream-

ing channel and another in the corresponding time-shifted streaming channel, respec-
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tively. As shown in Figure 5.3, the peer in the time-shifted streaming channel has

less partners compared to the peer in the live streaming channel. We also find that

the video playback is not very smooth in the time-shifted streaming channel. This

is reasonable as most people view the live broadcast video and they join the live

streaming channel, so peers in the time-shifted streaming channel are less than peers

in the live streaming channel. With the two separate channel method, none of exist-

ing live streaming channels is affected after introducing time-shifted streaming service

into UUSee. But it may cause problems: when a peer in the time-shifted streaming

channel leaves, its partners may not easily find a substitute. Thus their video has

glitches. We claim that we should use one channel to provide both time-shifted and

live streaming services, and further discuss and analysis are provided in the following

section.

The measurement results show that prefetching is used to implement NPR-style

time-shifted streaming. Prefetching is critical as peers have different interests and

their segment sharing opportunities are very low. Without prefetching, peers can

hardly fetch segments from other peers. Further, prefetching sometimes also ben-

efits peers directly. For example, if peers jump to past segments which have been

prefetched by themselves, they can view the segments without any delay. But UUSee

uses its proprietary protocol, and the details are still obscure. In this chapter, we

study efficient prefetching in NPR-style time-shifted streaming, and try to shed light

on the design and implementation of it.
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5.3 Prefetching in NPR-style Time-shifted Stream-

ing

Which segments peers prefetch is critical in NPR-style time-shifted streaming, and

a good prefetching strategy results in high quality service and low server cost. Let

us consider the case in Figure 5.4: peers i and j are requesting segment 6 and peer

l is requesting segment 3. Peer k has 2 units of upload capacity. On the left side of

Figure 5.4, peer k prefetches segment 3, then forwards it to peer l. The other two

peers cannot get segment 6 from other peers, and directly request it from the server.

In contrast, if peer k prefetches segment 6 as shown on the right side, it can fully

utilize its upload bandwidth to forward segment 6 to both peers i and j. Peer l may

be able to fetch segment 3 from other peers. Even if peer l fetches segment 3 from the

server as shown in the figure, the server bandwidth consumption is reduced by 1 unit.

Peers can prefetch any available segments, and they do not need to prefetch segments

in order. Figure 5.5 shows that peer k prefetches segments 4 and 6 and skips segment

5. Because it is going to view segment 4 and segment 6 is the one which is highly

demanded by other peers.
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5.3.1 System Model

A time-shifted system consists of a server S and |N(t)| peers with pi representing the

i-th peer, Ui and Di representing its upload and download bandwidth, respectively.

The system allows peers to view past video with a maximum shifted time of T .

The server continuously generates and injects new segments into the system, and

the available segments are within the time-shifted window of [t− T, t] where t is the

current time. Let ti denote pi’s viewing time at t, and we have t − T ≤ ti ≤ t.

Obviously, we can consider a live streaming system as a special case with T = 0.

We assume that peers have sufficient storage to store all segments in the time-

shifted window. As the window is usually a limited size covering hours of the video,

the assumption is reasonable and we do not need to consider segment deletion in case

of peers running of the storage. For example, a program such as a sitcom episode or

a sports game lasts at most hours, and the time-shifted window covers hours of the

video. Peers joining the system when the program is being broadcast are able to view

any segment of the program from the beginning to the current time. The [t − T, t]

window moves forward along with t, and we use M(t) to denote the set of segments

provided by the system at time t. For example, in a system with a time-shifted
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window of 1 hour long, peers are able to view any video segments broadcast between

7 pm and 8 pm at 8 pm. They can view any video segments broadcast between 8 pm

and 9 pm at 9 pm.

Let us consider peers’ asynchronous viewing activities and their local memory

status in the time-shifted streaming. Any segments within the [t − T, t] window are

available at the server, but not all of them are necessarily possessed by a peer. We

use Ij
i (t) to denote if pi has segment j at t. Let a 0-1 variable V j

i (t) represent whether

pi immediately views segment j at t. Peers can view any segments within [t − T, t],

which is determined by their subjective choices. They fetch segments according to

these V j
i (t)’s and their local memory status. Namely, they must fetch the segments

which they will view, but are not yet in their local memory. Peers also prefetch some

segments to improve segment availability at peers, and we use P j
i (t) to show if pi

prefetches segment j at t. The prefetched segments may be viewed in the future or

just be downloaded for forwarding to other peers. The value of P j
i (t) does not affect

peers’ current viewing experience as the segment is not emergent, but peers may view

the segment themselves or forward the segments to other peers in the following time

slots. V j
i (t) and Ij

i (t) are known in our context, and P j
i (t) is the variable that is

optimized based on the values of V j
i (t) and Ij

i (t).

5.3.2 Problem Formulation

Our primary objective in this chapter is to design an efficient prefetching method

in peer-assisted time-shifted streaming, so that peers are able to get most segments

before their playback deadlines, and most of the segments are fetched from other

peers instead of the streaming server.

In a time-shifted streaming system, peers are able to view any segments within the

window [t−T, t]. The segment requests which could not be served by other peers are
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finally sent to the server. Segment prefetching improves the supply of the segments,

but on the other hand, segment prefetching also consumes bandwidth and it should

not affect users’ viewing experience. Then the problem can be formulated as:

min
∑

j∈M(t)

( ∑

i∈N(t)

V j
i (t + 1) ∗ (1− Ij

i (t + 1))

−
∑

i∈N(t)

Ij
i (t + 1)Ui

)

s.t.
∑

i∈N(t)

(V j
i (t) ∗ (1− Ij

i (t)) + P j
i (t)) ≤

∑

i∈N(t)

Ij
i (t)Ui, ∀j (5.1)

∑

j∈M(t)

∑

i∈N(t)

(V j
i (t) ∗ (1− Ij

i (t)) + P j
i (t)) ≤

∑

j∈M(t)

∑

i∈N(t)

Ij
i (t)Ui, ∀i, j (5.2)

∑

j∈M(t)

(V j
i (t) ∗ (1− Ij

i (t)) + P j
i (t)) ≤ Di, ∀i (5.3)

Ij
i (t + 1) = Ij

i (t) + V j
i (t) ∗ (1− Ij

i (t)) + P j
i (t) (5.4)

P j
i (t) = 0, if Ij

i (t) = 1 (5.5)

In this formulation, P j
i (t)’s determine the prefetching solution. They are binary

optimization variables. The objective is to find the optimal prefetching variables

P j
i (t)’s to minimize the requests sent to the server.

Inequalities (5.1) and (5.2) are constraints ensuring that prefetching should not

affect peer viewing experience. Inequality (5.3) is peer download bandwidth con-

straint. Eq. (5.4) is the updating equation for peer’s local status. Eq. (5.5) is used to

remove the duplicated fetches. Both the prefetched segments and the regular fetched
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segments are stored in peers’ local storage and peers can forward them to other peers

in the following time slots.

According to the objective formula, we have two ways to minimize the number of

outstanding requests: decreasing the requests and increasing the supply. What peers

are going to view is completely determined by themselves, and thus the optimization

objective can be expressed as a maximizing problem after expanding the minimization

formula:

max
∑

j∈M(t)

( ∑

i∈N(t)

V j
i (t + 1) ∗ Ij

i (t + 1)

+
∑

i∈N(t)

Ij
i (t + 1)Ui

)
(5.6)

We update Formula (5.6) using Eq. (5.4). As peers’ local status (Ij
i (t)), what

peers are viewing (V j
i (t)) and what they will view in the next time slot (V j

i (t + 1))

are known in our context, the terms which consist of these variables are fixed. We

have the equivalent problem after updating the optimization problem by removing

these terms:

max
∑

j∈M(t)

( ∑

i∈N(t)

V j
i (t + 1) ∗ P j

i (t) +
∑

i∈N(t)

P j
i (t)Ui

)
(5.7)

Based on Formula (5.7), we know that prefetching is affected by what peers are

going to view and their upload capacities.

5.3.3 Heuristic Distributed Algorithm

The whole system information is required to calculate the optimal prefetching solu-

tion. For example, we need to know what peers are viewing, which segments exist in
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their local storage, how much their available upload bandwidth is, and so on. Though

the optimal prefetching gives the lower bound of the server bandwidth consumption,

the objective in this chapter is to design a practical solution that can be implemented

in a decentralized way.

We propose our heuristic distributed algorithm by decomposing the global opti-

mization problem into multiple small optimization problems running on individual

peers. For each single peer, it collects the local information from its neighbors, and

then determines which segments to prefetch. Similar to the global optimization prob-

lem, we have the local optimization objective: a peer prefetchs segments so that it can

forward the segments required by their neighbors as many times as possible. Thus,

we have the localized format of Formula (5.7):

max
∑

j∈M(t)

( ∑

k∈NBRi(t)

V j
k (t + 1) ∗ P j

i (t) + P j
i (t)U j

i (t)
)

(5.8)

Where NBRi(t) is the neighbor set of peer i, and U j
i (t) is peer i’s upload bandwidth

allocated for segment j.

Similarly, the constraints also have the corresponding local format by replacing

Nt with NBRi(t) and Ui with the bandwidth allocated by peer i.

Usually, it is hard to know the accurate bandwidth that a peer allocates to a

specific segment in a distributed system. Further, a peer is both a request sender

and a request receiver. Therefore we divide the algorithm into the request generation

sub-algorithm and the bandwidth allocation sub-algorithm. A peer uses the request

generation sub-algorithm to figure out the most demanding segments of its neighbor

peers, and sends prefetching requests for these segments first. It uses the bandwidth

allocation sub-algorithm to determine which received requests should be served, to

increase the supply of the most demanding segments. Both of them have the same
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objective in Formula (5.8). In the request generation sub-algorithm, a peer not only

finds the most demanding segments, but also determines how much bandwidth it can

allocate for these segments. The bandwidth is used to forward the segments to other

peers after the peer receives them.

In our simulation, peer i periodically calculates its residual bandwidth using its

upload bandwidth to subtract the consumed bandwidth in the previous period. It

determines which segments to prefetch based on the demand and supply of the seg-

ments from its neighbors. Then it calculates bandwidth that it can allocate to these

requested segments, which is called the committed bandwidth. The segment requests

are sent with this committed bandwidth information. If the peer does not have enough

residual bandwidth to compensate the bandwidth that it consumes to prefetch a seg-

ment, it stops prefetching. When peers receive the requests, they always serve the

requests which are for the rarest segments and/or the ones with higher committed

bandwidth first. Tables (5.2) and (5.3) are the pseudo code for request generation

and bandwidth allocation sub-algorithms on a single peer, respectively.

We can see that no global knowledge or synchronization are required in these

algorithms, and the prefetching solution of a peer does not depend on the solution of

another peer. Thus, the algorithm is scalable and practical.

5.3.4 Two Channels or One Channel?

In UUSee, live streaming and time-shifted streaming are provided in two separate

channels, which is not necessary. Actually we can use a single channel providing both

live streaming and time-shifted streaming. Further using two separate channels may

cause more direct requests to the server.

As we focus on a specific time, we can ignore the time variable. Let us use Nl to

represent the peers which use the live streaming in the whole peer set of N . With
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if pi is going to view segment j in the next time slot then
Checking if it is in the local memory Ij

i = 1
if not in local memory then

pi requests segment j
end if

end if
for any other segments within the shifted window do

if pi does not have them then
pi checks its neighbors’ memory status to find the rarest segment
calculates its residual bandwidth
if residual bandwidth > bandwidth consumed by downloading
a segment then

requests it with committed bandwidth
min(residual bandwidth, 2*bandwidth consumed by segment
prefetching)

else
break

end if
end if

end for

Table 5.2: Pseudo code: which segments to request.

for all received requests do
if it has residual bandwidth then

serves the requests for segments which sending peers need to
view in the next time slot
if still has residual bandwidth then

finds the requests for the rarest segment in its neighborhood
serves the one with highest committed bandwidth
if the committed bandwidth is equal, randomly choose one of
the requests

end if
end if

end for

Table 5.3: Pseudo code: which requests to serve.

UUSee’s method, these peers join the live streaming channel and the peers in N −Nl

join the corresponding time-shifted channel. In the live streaming channel, all peers

are synchronized to view the same video. The number of requests sent to the server

is determined by the streaming rate R and peers’ aggregated upload bandwidth. We
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get the number of requests directly sent to the server in the live streaming channel as

max(|Nl| ∗R−
∑
i∈Nl

Ui, 0) (5.9)

While for the peers in corresponding time-shifted channel, the expected requests

received by the server is

max(
∑
j∈M

(
∑

i6∈Nl

V j
i ∗ (1− Ij

i )−
∑

i6∈Nl

Ij
i Ui), 0) (5.10)

If we use a single channel method, the total number of requests sent to the server

can be calculated as

max(
∑
j∈M

(
∑
i∈N

V j
i ∗ (1− Ij

i )−
∑
i∈N

Ij
i Ui), 0)

= max(|Nl| ∗R−
∑
j∈M

∑
i∈Nl

Ij
i Ui

+
∑
j∈M

(
∑

i6∈Nl

V j
i ∗ (1− Ij

i )−
∑

i 6∈Nl

Ij
i Ui, 0) (5.11)

Obviously, peers which use live streaming have the segments within the window

M . Namely,

∑
j∈M

∑
i∈Nl

Ij
i Ui =

∑
i∈Nl

(
∑
j∈M

Ij
i )Ui ≥

∑
i∈Nl

Ui (5.12)

So we have (5.11) ≤ (5.9) + (5.10). The single channel method generates less

requests directly sent to the server compared to using two separate channels in UUSee.

This is easy to understand: dividing peers into two separate channels disables some

possible peer cooperation. The residual bandwidth in one channel cannot be used to

help peers in the other channel. Further, with the time-shifted feature, peers losing
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connections because of their own network or their partners’ departures can still view

the video without missing any content. This is another advantage of the single channel

method.

5.4 Performance Evaluation

We developed a simulator to evaluate the performance of our method (referred to

as NPR), comparing with the following four methods. (1) Initial Playback Position

Caching (IPP) proposed in [13]: a peer caches the content starting from the peers’

initial playback point; (2) Live Stream Position Caching (LSP) proposed in [13]: a

peer caches the content starting from the system live streaming point when the peer

joins the system [13]. For example, a peer joins the system at 8 pm, and chooses to

view the video content at 7 pm. It caches the content starting from 7 pm in IPP,

whereas it caches the content starting from 8 pm in LSP. (3) UUSee style method

(referred to as NPR2) which has two channels for the same program: one for live

streaming and the other for time shifted streaming. Please note that NPR and NPR2

are the same when there is only live streaming or only time shifted streaming. NPR2

is used as a reference to show that whether we need to separate peers into two channels

providing live streaming and time shifted streaming, respectively. (4) The optimal

method (referred to as Optimal) which is a centralized algorithm solving Problem

(1) and is used as a reference method. There are some other related methods [51],

but they are tree-based. Since we implement a mesh-based overlay which is used

in most commercial systems, and applying these methods in a mesh-based overlay

makes them quite different from the original ones. Therefore they are not included

in the simulation.

In our simulation, there are 1000 peers by default, and they have heterogeneous
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bandwidth. To simplify the description, we only have two types of bandwidth: 20%

of peers called high bandwidth peers have the upload bandwidth of 3 segments per

time slot and download bandwidth of 10 segments per time slot. 80% of peers called

low bandwidth peers have the upload bandwidth of 1 segment per time slot and

download bandwidth of 5 segments per time slot. The settings reflect that most of

peers do not have high bandwidth and the asymmetric upload/download bandwidth

in the Internet. In addition, we also simulate other settings with different bandwidth

distributions, and get the similar results. In all experiments, the streaming server

constantly generates 1 segment per time slot, and a maximum of 300 past segments

are available by default. When peers cannot fetch segments that they will view in the

next time slot from other peers, they send their requests to the server. In order to

focus on the impact of these methods on the server bandwidth cost, we assume that

the server has unlimited upload bandwidth. We define the server bandwidth cost to be

the percentage of the server bandwidth consumption in the whole system bandwidth

consumption. For example, if 50% segments streamed to peers are provided by the

server, the sever bandwidth cost is 50%.

We implement the following 4 sets of experiments: 1) peers dynamically join and

leave the system, and randomly choose any segments between t−T and t to view, 2)

different available shifted period Ts, 3) different viewing distributions, 4) peers jump

backward and forward.

5.4.1 Impact of Peer Churn

In this group of simulations, we study whether these methods are robust to peer churn.

Peers dynamically join the system as a Poisson process with an average arrival rate

of 10 peers per time slot and their online durations follow an exponential distribution

with a mean of 500 time slots. A peer randomly chooses a playback time between t−T
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Figure 5.6: NPR considerably reduces the server bandwidth cost through prefetching.

and t according to the uniform distribution. Figure 5.6 shows their performance: our

NPR method consumes less server bandwidth than IPP, LSP and NPR2. Because

in our method, peers utilize the spare bandwidth to fetch segments which are not

required by themselves but highly demanded in the system, and this improves the

segment availability at peers. NPR2 prevents peers in a channel to help peers in

another channel, and thus its server bandwidth cost is higher than NPR. However,

peers have limited neighbors and their decisions are based on their local information

in our simulation. Thus, there is a performance gap between our method and the

optimal one. It is more obvious when the system changes more dynamically, as

shown in the following subsection.

As we discussed before, prefetching implies more bandwidth consumption because

it downloads segments which are not required immediately by a peer. In Figure 5.7, we

present the extra bandwidth consumption introduced by each method. We define the

extra bandwidth cost as the percentage of extra consumed bandwidth compared to the

video streaming rate. For example, if the video streaming rate is 1 segment/slot, and

the actual average download rate is 1.1 segments/slot, we have 10% extra bandwidth
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Figure 5.7: Prefetching in NPR also consumes extra peer bandwidth.

cost.

Our NPR method consumes more extra bandwidth than LSP. Because in our

method, peers can prefetch any available segments. While peers in LSP only fetch

the current segments and the segments which they are going to view. Peers in IPP

do not prefetch any segments, and there is some control overhead. Therefore, the

extra bandwidth is close to 0. The extra bandwidth cost in other simulations has the

similar results and we do not present them in this chapter.

5.4.2 Impact of the Maximum Shifted Time

In this group of simulations, we investigate the impact of the maximum shifted time

on the server bandwidth cost through changing the value of T from 150 to 600 time

slots. As shown in Figure 5.8, the longer the maximum shifted time is, the higher the

server bandwidth cost is for all the methods. This is because peers have more playback

points to choose with a longer maximum shifted time. Therefore, the segment sharing

becomes more challenging. Since peers are able to identify which segments are more

scare using our prefetching method, the server cost increases more slowly with NPR
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Figure 5.8: The longer the maximum shifted time, the higher the bandwidth cost.
Prefetching helps NPR alleviate the impact.

than with IPP and LSP.

5.4.3 Impact of the Initial Playback Point Distribution

In a time-shifted streaming, peer viewing time may not be uniformly distributed

between t − T and t. For example, the initial playback points are more likely to be

close to the beginning of a video than to the end of the video. We equally divide the

video in [t−T, t] into three sections, which represent the beginning, the middle and the

end, respectively. We conduct the experiment in which peers’ initial playback points

are in one of three sections. The numbers of peers in these three sections follow

Zipf’s law which is an empirical law formulated using mathematical statistics [1].

The Zipf parameter controls the number of peers viewing each section. Namely, if the

Zipf parameter is small, most of peers are viewing the end section; whereas most of

peers are viewing the beginning section when the parameter is large. A peer firstly

determines which section it wants to view, then it randomly chooses the viewing time

in the corresponding section. For example, if a peer chooses to view the beginning
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Figure 5.9: NPR pretching method achieves low server bandwidth cost with different
initial playback point distributions.

section, its viewing time can be any value in [t − T, t − 2T
3

]. Figure 5.9 indicates

that the more peers view the beginning section, the less the server bandwidth cost is.

This is because usually the segments in the beginning section are cached more than

the recent segments. In our NPR method, peers determine which segments to fetch

and cache based on the segment availability and demand, so it always consumes less

server bandwidth.

5.4.4 Impact of Dynamic Viewing Activities

We also show the impact of peer jumping backward and forward within the shifted

time window. Peers jump to view other video segments after they join the system.

The intervals between a peer’s two consecutive jumps are uniformly distributed be-

tween 0-500 time slots. In Figure 5.10, we can see that the server bandwidth cost is

very high for all the methods. But our method steadily decreases the server band-

width cost after 500-600 time slots. As our NPR method forces peers to aggressively

fetch segments using peers’ spare bandwidth, they maintain a considerable number
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Figure 5.10: Peers randomly jump backward/forward, average 10 times per peer in
this experiment. NPR prefetching method reduces the server cost over time.

of segments in its local memory. Thus peers are able to view the segments from their

local memory or fetch them from other peers.

5.5 Conclusion and Discussion

In this chapter, we study the design of NPR-style time-shifted streaming with low

server cost using segment prefetching. We first formulate it as a problem of minimizing

the server bandwidth cost. Then we propose our distributed heuristic algorithm

called NPR method, with which each peer determines its segment scheduling. The

simulation results show that our NPR method can considerably reduce the server

bandwidth cost. Although the extra peers’ bandwidth consumed by prefetching in

our NPR method does not impair users satisfaction, it is worth to figure out the

lower bound of the extra bandwidth. In the NPR method, peers aggressively prefetch

segments whenever there is idle bandwidth. However, it is not necessary if the system

is relatively stable and peers do not frequently jump backward/forward. If we can
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predict what peers are going to view in following time slots and do not prefetch the

segments are rarely viewed, the overall bandwidth cost can be reduced. We will

investigate segment prediction algorithms in the future.
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Chapter 6

Designing Efficient Real-time P2P

Streaming Systems with

Heterogeneous User Demands on

Playback Delay

6.1 Motivation

Peer-to-Peer (P2P) live streaming has been widely used for large-scale video distri-

bution [70]. However, the playback delay, which is the difference between the time

when the video is originally streamed out from the server and the time when a peer

receives it, increases with the increase in the system size. Some peers would like to

view delay-sensitive videos (e.g., breaking news, live sports etc.) within a bounded

delay even if they need to pay for the bounded delay. We call them subscribers to

differentiate them from the ordinary peers and we define the subscriber bounded delay

(SBD) problem as streaming the video to subscribers within the delay bound.
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Providing subscribers with delay-bounded service is important since it can improve

user experience and can help service providers gain extra profits. However, current

research studies mainly focus on minimizing overall delay in a P2P streaming system,

which cannot be directly used for providing delay-bounded service to subscribers.

Because these delay minimization solutions do not differentiate between subscribers

and ordinary peers, the delay requirement of subscribes may be violated if they are

placed far away in the streaming overlay from the streaming server. To view the

video within the bounded delay, these subscribers need to establish new connections,

e.g., by directly requesting the video from the server. Such a mechanism impairs the

system scalability.

Note that it is impossible to guarantee the bounded delay of every subscriber at

any time. There are two major reasons. First, peers in a P2P streaming system may

dynamically join or leave the system. As a result, the average bandwidth per peer

in the system is dynamic. Second, all peers and the streaming server have limited

bandwidth, and thus they have a limited number of neighbors in the streaming overlay.

As a result, the average number of hops between the streaming server and a peer in

the system increases as the total number of peers increases. Even if we use admission

control, we still cannot absolutely guarantee the bounded-delay of subscribers due to

peer dynamics. Therefore, in this chapter, we aim to serve as many subscribers as

possible with bounded delay service, and serve the remaining subscribers and ordinary

peers with best-effort delay service.

In this chapter, we first formulate the SBD problem as a decision problem, and

prove that it is NP-Complete by reducing the bounded Steiner tree problem [61] to

it. We propose the concept of peer’s fanout capacity which is the total amount of

upload bandwidth that it can allocate to stream the video to subscribers. Then we

propose a centralized algorithm and a distributed implementation called high fanout
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promotion (HFP) algorithm to efficiently serve the as many subscribers as possible.

6.2 Problem Formulation and Design Overview

In this section, we first formulate the subscriber bounded delay problem and show

that it is NP-complete. Then we propose a centralized heuristic design which helps

the system to serve subscribers with the bounded delay video as many as possible.

6.2.1 Problem Formulation

We consider a single channel P2P live streaming system, and model it as a graph

G = (V,E), where V is the set of all participating peers including the server, and

E is the connection set among peers. Peer i has an upload bandwidth of Ui. A

streaming server S0 with upload capacity U0 serves all peers in this channel. Note

that we use a single streaming server to simplify the description of our model. Our

model has no limitation on the number of streaming servers. The video streaming

rate is R. Based on studies in [7], the bandwidth bottleneck occurs at network edges.

Therefore, a peer’s upload bandwidth determines how many other peers it can serve.

We denote the subscriber set with VS and VS ⊆ V . All subscribers prefer to

receive the video within the delay bound T . For any edge < i, j >∈ E, we use di,j

to represent the link delay between peer i and peer j. Let Di represent the playback

delay at peer i. If peer i receives video segments from peer j, the link delay dj,i is

accumulated at peer i. Let Pi be peer i’s upstream peer set, which consists of one or

more peers. The playback delay at peer i can be presented as:

Di = maxj∈P (i)(Dj + dj,i) (6.1)
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We use rj,i to represent the rate at which peer j forwards the video segments to

peer i. Peer i has
∑

j∈Pi
rj,i = R.

The subscriber bounded delay problem (SBD problem) can be described as:

Given U0, identify ri,j, ∀i, j ∈ V such that the following constraints are satisfied:

∑
j∈Pi

rj,i = R, ∀ i ∈ V, (6.2)

Di ≤ T, ∀ i ∈ VS, (6.3)

∑
j∈V

ri,j ≤ Ui, ∀ i ∈ V (6.4)

Eq. (6.2) ensures that all peers are fully served with the smooth video. Inequal-

ity (6.3) is the subscribers’ bounded delay constraint, and Inequality (6.4) is the

bandwidth constraint.

Theorem 1. The SBD problem is NP-Complete.

Proof. It is easy to see that the SBD problem is in NP: given all the peer-to-peer

delay information and a solution, we can determine the playback delay of all peers.

Then we verify the solution by comparing the subscribers’ playback delay with the

delay bound T . This can be done in polynomial time.

The NP-complete Steiner tree decision problem [61] can be reduced to the SBD

problem in polynomial time. Given an edge-weighted graph G = (V, E, W ) in which

V is the vertex set, E is the edge set, and W is the corresponding weight set, and

a subset VS ⊆ V , a k-value Steiner tree decision problem is to determine whether a

Steiner tree of total weight at most k exists. We construct the SBD problem on the

overlay G′ = (V ′, E ′,W ′), with a subset V ′
S and the delay bound T = k. Peer set V ′

and subscriber set V ′
S are identical to V and VS in the Steiner tree decision problem,

respectively. For every edge e ∈ E, we have a corresponding edge e′ ∈ E ′ with the
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delay w′ = w. For any pair of peers in V ′
S, e.g., (i, j), we add an edge < i, j > to E ′

with an infinite delay if < i, j > is not yet in E ′.

Next we update the edge delays: starting from a set O with only one element -

server 0, we randomly pick up a peer i in V ′
S, and find the path with the lowest delay

between it and any other peers in O. Then update the edges from peer i to all peers

in O with this lowest delay. After this, we add peer i and all peers on the path but

not yet in O into O. Finally, we choose another remaining peer in V ′
S, and repeat the

aforementioned steps till all peers in V ′
S have been added to O. This can be done in

polynomial time. After the reduction, we have a path connecting all subscribers with

the minimum delay which is equal to the minimum weight of the Steiner tree in the

decision Steiner tree problem.

For any peer i ∈ V ′ including the server, we set its upload bandwidth equal to the

video streaming rate, i.e. Ui = R. Namely, peer i can just serve one other peer, and

every peer has exactly one parent and one child. The optimal solution of minimizing

the maximum delay at subscribers is starting from the server 0 and go through all

peers in V ′
S. The maximum subscriber playback delay is the total path delay from

the server 0 to the last subscriber. Whenever we have an instance for k-value Steiner

tree in G, we can find a corresponding path starting from the server and covering all

peers in V ′
S with delay less than or equal to T in G′. And vice versa.

Thus, SBD is NP-Complete.

6.2.2 Centralized Heuristic Design

Since the SBD problem is NP-Complete, we are not able to find a polynomial al-

gorithm to determine if there exists a solution for all subscribers to view the delay-

bounded video. In this section, we develop a heuristic to serve as many subscribers as

possible with bounded delay. In other words, this heuristic minimizes the number of
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Figure 6.1: In some cases, placing non-subscriber peers close to the server can help
reducing the subscribers’ playback delays.

delay bound violations at the subscribers. Further, the delay-bounded service should

be stable. That is, when the system cannot support any more subscribers, it should

decline any newly incoming subscribers’ requests for the delay-bounded service. These

new subscribers receive the best-effort delay service.

According to Eq. (6.1), the playback delay is determined by the maximum number

of overlay hops traversed by the video, and the delay on each link. It is straightforward

to construct a streaming mesh in which we place the subscribers close to the server.

Because this method makes the local optimal choice, we call it the greedy method.

However, the greedy method consumes lots of server bandwidth in some cases.

Let us consider the example in Figure (6.1) which shows a part of the overlay and

the playback delay bound is 15 seconds. Peers A, B and C are subscriber peers,

and peer D is an ordinary peer. Peer D has higher upload bandwidth compared

to the subscriber peers, and it is geographically close to the server. On the left

side, the greedy method places subscriber peers close to the server and the ordinary

peers get the video from the peripheral subscriber peers. The subscriber peers have

limited upload bandwidth, so the video traverses many hops to reach the peripheral

subscriber peers (e.g., subscriber peer C). Thus, the playback delay at C violates

the delay bound. In this case, peer C needs to request the video directly from the



www.manaraa.com

122

server. The right side shows an alternative which inserts the ordinary peer D between

the subscriber peers and the server, such that it streams the video to all the three

subscriber peers without delay violation, and no extra server bandwidth is required.

A sophisticated heuristic should construct a mesh where subscriber peers have

playback delays within the delay bound and only a few peers directly connect with

the server. To achieve this, some ordinary peers are inserted in front of subscriber

peers as shown in the aforementioned example. Here we define a peer’s fanout capacity

to help explain our design. Usually, it is defined as how many other peers it can serve.

In this chapter, the concept is a little different. We define the peer’s fanout capacity

based on the peer’s upload bandwidth and the playback delay. Let F (i) be the fanout

capacity of peer i, which is defined as how much service it can provide to subscriber

peers within the bounded delay, i.e.,

F (i) =
∑

φ(j) ∀ j ∈ VS (6.5)

where

φ(j) =





ri,j if Di + di,j ≤ T

0 otherwise

,
∑

φj ≤ Ui

To reduce the direct connections to the server, peers with high fanout capacities

are placed close to the server. Our heuristic runs as as follows: peers are sorted

based on their fanout capacities. Then we push the peers one by one into the system

in descending order. Every time we push a peer, we update the remaining peers’

fanout capacities: if the pushed peer is a subscriber, it is removed from VS. It is

possible that the system cannot serve all subscribers with delay-bounded service. The

heuristic then treats the unsatisfied subscribers as ordinary peers since the system
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cannot serve any more subscribers with the delay-bounded video. Further, it needs to

provide existing subscribers with delay bounded video. When there exist unsatisfied

subscribers, it means that the number of subscribers exceeds the system’s capacity,

and more server resources are required to accommodate all subscribers’ requests. The

heuristic can minimize the server bandwidth requirement, but the maximum number

of subscribers that the system can accommodate is determined by the system itself.

With this algorithm, we have the following desirable properties:

• Peers which help the system to provide bounded delay service are placed close

to the server.

• Under the same conditions, subscriber peers have higher priorities than the

ordinary peers to be pushed into the system. This is because the subscriber

peers themselves are involved in calculating the fanout capacity.

• Ordinary peers also benefit from forwarding video to subscriber peers. They

are placed close to the server, so they have a more reliable video stream with

short delay.

The centralized heuristic design is used to analyze the optimal case, and is imple-

mented for comparison.

6.3 Distributed Implementation

In practice, it is difficult to have complete knowledge about all peers. Further, the

system cannot afford the cost of the aforementioned centralized method. We propose

high-fanout promotion (HFP), a distributed delay-aware algorithm which helps the

system to provide delay bounded videos to subscribers. In HFP algorithm, some peers

get promoted to be closer to the server, so more subscribers get the video within the
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delay bound T . The concept of fanout capacity can be found in Section III-B. The

components of HFP algorithm are listed as follows.

6.3.1 New Peer Joining

The basic idea of our method is to utilize high fanout capacity peers to help delay-

bounded video distribution. We make all peers maintain their bandwidth and play-

back delay information < Ui, Di > for the fanout capacity computation, and Di is

initially +∞ when peer i joins the system.

Peer i contacts the server which maintains the list of online peers, and the server

returns a few peers which have low playback delay as well as high residual bandwidth

to it. If peer i is a subscriber peer, it checks the delay dj,i and the available bandwidth

rj,i between itself and the potential parent peer j. It ignores those peers which have

Dj + dj,i > T .

Then it selects peers with low delay and high available bandwidth as its parents,

e.g., peers with high
rj,i

Dj+dj,i
. Subscriber peer i might not get sufficient bandwidth

(e.g.,
∑

rj,i < R) because of the delay requirement. Then it contacts the server

which compensates for the lack of bandwidth. The number of subscribers meets the

upper bound of the system capacity when the server does not have bandwidth to serve

subscribers. In this case, these subscribers and the ones after them will be treated

as ordinary peers. If ordinary peers are not fully served by the peers returned by the

server, they request the neighbors of those peers, and repeat the above process to find

more parents.

6.3.2 High Fanout Peer Promotion

Peers with high fanout potential might join the system late, and their fanout capacities

may be low because of being far away from the server and thus have long playback
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delays. This is true for both subscriber peers and ordinary peers. In this section, we

describe the algorithm to promote these peers so they can take over some subscriber

peers’ requests which are directly served by the server.

To get promoted, peers need to show that they would have higher fanout capacities

if they were placed close to the server than the ones substituted by them. To figure

out the fanout capacity, a peer maintains its playback delay, which can be done as

following: whenever peer i receives a segment from the upstream peer j, it records

the playback delay via peer j, namely, Dj + dj,i. It periodically updates Di using the

Eq. (6.1). Please note that the delay recording and updating are independent. It is

not necessary to update Di whenever peer i receives a new segment. For example, we

use the average recorded playback delay, and update Di periodically. It reduces the

computation cost and also avoids the deviation caused by traffic changes.

The promotion consists of two steps:

1) Detection: This step is used to find out if there are any upstream peers which

can be swapped with a downstream peer. Normally, only peers with high upload

capacities try to get promoted. Peer i contacts its upstream peer (e.g., peer j) within

a fixed number of hops. Peer j returns its parent list to i, then i contacts them to find

the link delays from these peers to itself and the playback delays at these peers. Then

it figures out the playback delay Di if peer i were placed at the position of peer j. It

also figures out the new playback delay Dj at peer j when peer j is a subscriber. If

the new playback delay still meets the bound, it is safe to place peer i at the position

of subscriber j. Otherwise, the subscriber j’s viewing experience will be affected.

Then peer i asks the server to send a list of subscriber peers which are physically

close to peer i. Peer i contacts these peers and peer j’s child subscriber peers to

figure out how many subscriber peers it can serve if it were placed at the position of

j, namely, the fanout capacity. It compares the fanout capacity with peer j’s, and
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peer j becomes a swapping candidate if its fanout capacity is smaller than peer i’s.

After obtaining all the swap candidates, peer i chooses the one which has the

lowest fanout capacity as the one to swap with. If no such candidate is found, peer i

cannot be promoted.

2) Swapping: Peer i creates connections with parents of peer j, and informs peer

j’s subscriber peers to replace their parent j with it. At the same time, it disconnects

from its current parents. Peer j also disconnects from its parents and connects peer

i as its new parent peers. If it is not fully served by peer i, it connects to peer

i’s previous parents. To maintain smooth video playback during the swapping, the

parent replacements are done one by one. For example, peer i connects to one of peer

j’s parents, but peer j is still connected to its parent until the connection between

the parent and peer i is created and peer i is able to stream video content to the

subscriber peers. Then peers j’s previous subscriber peers disconnect from peer j.

6.3.3 Adaptation to dynamic cases

The promotion cost is non-trivial, and the promoted peers should serve for a long

period. The promoted peer’s stability affects the performance of our promotion al-

gorithm. If a recently promoted peer leaves the system immediately, the subscriber

peers cannot benefit from it, and their video quality is impaired. Further, it might

need more server bandwidth to keep the video playback smooth.

Usually, the longer a peer resides in the system, the more stable it is [74]. In the

implementation, we define the stability of a peer in terms of how long it has been, e.g.,

log(ti), and ti is how long peer i is online. Peers which have high upload bandwidth,

are physically close to some subscriber peers and have high stability values are the

ideal candidates to submit the promotion requests.
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6.4 Simulation Results

In this section, we evaluate the performance of our distributed HFP algorithm via

simulations. We use the centralized heuristic as the benchmark. We also implement

two other algorithms which are the greedy algorithm and the snow-ball algorithm

[39]. The greedy algorithm is straightforward and directly places subscribers closer

to the server compared to the ordinary peers. The snow-ball algorithm has close-to-

optimum delay performance for the overall system, but it does not explicitly provide

bounded delay to subscribers.

In the simulation, the link delays between peers are generated from the node to

node latency measurement results in [68]. By default, the server’s upload bandwidth

is 3 Mbps and it streams out the video at 300 Kbps to 600 peers. The ratio among

these settings is close to the real ratio presented in [79]. Peers dynamically join the

system at an exponentially distributed rate with the average value of 10 peers/second.

The peers have various upload bandwidth: 15% at 1 Mbps, 40% at 384 Kbps and 45%

at 128 Kbps. 50% of all the peers are subscribers with 6-second delay bound, if not

specified otherwise. We also run simulations with other parameters, and obtain results

similar to those shown here. In the simulation, we check the subscribers’ playback

delay. The maximum number of subscribers that the system supports is equal to the

number of subscribers with playback delay less than or equal to the delay bound. In

other words, the system cannot serve all subscribers with delay-bounded video when

the maximum playback delay at subscribers exceeds the bound.

We first investigate the performance of these algorithms with different session sizes

and summarize the results in Figure 6.2. Usually, the overall playback delay in all

algorithms increases with the increase in session size. The snow-ball algorithm does

not differentiate between subscribers and ordinary peers, so there always exist bound

violations at some subscribers. The results show that our algorithm can support 17%
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Figure 6.2: HFP enables the system of a larger size (600 peers) to provide all sub-
scribers with delay-bounded (6 seconds) video, and it can support 17% to 50% more
subscribers even if the system becomes too large to serve all subscribers with delay-
bounded video.

to 50% more subscribers with bounded playback delay compared to the other two

algorithms.

The snow-ball algorithm does not explicitly minimize the subscribers’ delay, so it

can only support a small-size session (e.g., < 200). When the session does not have

many peers, the naive greedy algorithm is able to provide the video to subscribers

within the 6-second bound. This is because the server’s bandwidth is sufficient to

compensate for the subscribers’ requests. However, when the peers’ population size

increases, HFP algorithm outperforms the greedy algorithm as it organizes peers in

a more efficient way.

Then we evaluate the impact of peers’ bandwidth distribution. In Figure 6.3,

we measure the maximum playback delay of all subscribers in two cases: peers with

heterogeneous bandwidth and peers with homogeneous bandwidth. But we maintain

the average bandwidth to be the same value in these two cases. We can see that the

bandwidth heterogeneity helps all these algorithms achieve shorter subscriber play-
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Figure 6.3: HFP works better in heterogenous bandwidth scenarios.

back delays. HFP algorithm can serve all subscribers with bounded-delay video (≤ 6

seconds) in the heterogeneous case. It uses ordinary peers to help reduce subscribers’

playback delays, so the performance difference caused by bandwidth heterogeneity

is more obvious in our algorithm than in the greedy algorithm and the snow-ball

algorithm.

Figure 6.4 shows the subscriber percentage changes against playback delay. When

the subscriber percentage is low, only a few peers have the delay-bounded require-

ment. Both the greedy algorithm and HFP algorithm can stream the video with

bounded playback delay to all subscribers when the percentage of subscribers is low.

When the subscriber percentage increases, both greedy algorithm and our algorithm

cannot serve all subscribers within the bound, but our algorithm can serve about

17% more subscribers. As the snow-ball algorithm treats subscribers and ordinary

peers the same, it is not affected by the percentage of subscribers. When all peers

are subscribers, all of them have similar subscriber delays because now there is just

a single type of peer in the system.

HFP algorithm dynamically promotes peers to new positions and connections are
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re-established in the process. The convergence property is an important factor for

evaluating our proposed HFP algorithm. We simulate the scenarios that all peers

join the system within a short period and stay in the system until the end of the

simulation. When a peer is promoted, we call it a promotion round. We evaluate

the convergence through the promotion rounds. Figure 6.5 shows that the maximum

number of promotion rounds per peer increases only a little when we double the

session size, and the average value almost always remains low. This indicates that

HFP algorithm converges fast to a stable state.

6.5 Conclusion and Discussion

Subscribers in a P2P live streaming system expect to view time-sensitive videos within

a bounded delay. However, existing solutions do not provide the delay-sensitive peers

called subscribers with bounded-delay service in a large-scale system. In this chapter,

we study the problem of providing delay bounded videos to as many subscribers as

possible. We show that the subscriber bounded delay (SBD) problem is NP-complete

by relating it to the Steiner tree decision problem. Then we propose a heuristic

and its decentralized implementation, called high fanout promotion (HFP) which

helps the system with fixed server bandwidth to provide delay-bounded service to

as many subscribers as possible. HFP algorithm promotes certain peer, which can

serve many subscribers, close to the server, and therefore the system’s capacity of

serving subscribers is expanded. We conduct packet-level simulations to evaluate its

performance, which show that HFP algorithm outperforms two other approaches. As

future work, we will investigate a method to predict a system’s capacity for serving

subscribers and adopt admission control mechanisms in our solution.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this dissertation, we studied the design of efficient P2P streaming systems with

heterogeneous user demands. Specifically, we considered the following three demand

heterogeneity problems.

• To achieve user satisfaction and resource efficiency, P2P streaming systems

should provide users with different streaming rates according to their demands

on video quality (e.g., adaptive streaming rates). However, the demands are

dynamic and a user may change his/her demand at anytime. The dynamic

demand significantly complicates the design of a P2P streaming system. Thus

we proposed algorithms to handle these heterogenous and dynamic demands.

• To provide time-shifted streaming service, we designed an efficient data prefetch-

ing algorithm and implemented it in a distributed way so that peers can share

video content with one another.

• To provide a subset of peers called subscribers with a live broadcast program
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within short and bounded playback delay is an NP Complete problem. We

designed a heuristic algorithm to provide delay bounded videos to as many

subscribers as possible.

When designing P2P streaming systems for demand heterogeneity, we should com-

prehensively consider several design goals (e.g., resource efficiency, user experience,

system scalability, etc.). But these goals usually conflict with one another, and it

is challenging to optimize all of them at the same time. A proper design should

make reasonable trade-offs among these goals according to the specific application

scenarios. Further, the implementation complexity is also an important factor. Our

solutions use peer cooperation to achieve high streaming quality and low server cost,

and the cooperation algorithms can be easily implemented. However, we do not have

many real traces for demand heterogeneity simulation, since demand heterogeneity

has received little attention and there are not many literatures about it. Therefore,

we simulated as many typical demand heterogeneity scenarios as possible to evaluate

our algorithms.

Peer cooperation is important in our algorithms, while the incentive mechanisms

which encourage peers to contribute their bandwidth to help other peers are not

discussed here. There are many literatures about incentive mechanisms, and they

can be adopted into our algorithms with minor changes. This is beyond the scope

of this dissertation. To sum up, our dissertation addresses how to efficiently utilize

peers’ resources to support heterogeneous demands.

7.2 Future Work

With the evolvement of hardware and wireless technology, mobile devices become

powerful and thousands of millions users have been viewing multimedia content via
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their mobile devices. Several commercial P2P streaming systems including UUSee [70],

PPLive [58] and PPStream [60], also provide the mobile version of their P2P stream-

ing software. We anticipate to see more and more mobile devices in P2P streaming

systems because of their ubiquity. The future work is to extend the demand het-

erogeneity solutions to P2P streaming systems consisting of a large number of such

mobile users. Recently, Liu et al. [37] investigate the optimal resource utilization

in such P2P streaming systems by exploring all potentials of utilizing available peer

resource. However, to fully accommodating demand heterogeneity in such systems is

very challenging. The mobile devices have specific features such as mobility, limited

power capacities, small screens, and so on. Users’ subjective demands may not be fully

supported because of the devices themselves. All these factors complicate the peer

cooperation and the system design. To support users’ heterogeneous demands in such

systems requires significant modifications in current systems and further research.

P2P streaming has been proved successful in sustaining high definition video

streaming with limited server bandwidth. The idea of peer cooperation can also

be used in many other systems, such as content distribution network, massively

multi-player online game, cloud computing. There are tremendous challenges and

opportunities of extending P2P streaming technologies to these fields.
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